Metamath Proof Explorer


Definition df-nrg

Description: A normed ring is a ring with an induced topology and metric such that the metric is translation-invariant and the norm (distance from 0) is an absolute value on the ring. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion df-nrg NrmRing = { 𝑤 ∈ NrmGrp ∣ ( norm ‘ 𝑤 ) ∈ ( AbsVal ‘ 𝑤 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnrg NrmRing
1 vw 𝑤
2 cngp NrmGrp
3 cnm norm
4 1 cv 𝑤
5 4 3 cfv ( norm ‘ 𝑤 )
6 cabv AbsVal
7 4 6 cfv ( AbsVal ‘ 𝑤 )
8 5 7 wcel ( norm ‘ 𝑤 ) ∈ ( AbsVal ‘ 𝑤 )
9 8 1 2 crab { 𝑤 ∈ NrmGrp ∣ ( norm ‘ 𝑤 ) ∈ ( AbsVal ‘ 𝑤 ) }
10 0 9 wceq NrmRing = { 𝑤 ∈ NrmGrp ∣ ( norm ‘ 𝑤 ) ∈ ( AbsVal ‘ 𝑤 ) }