| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cnrm | ⊢ Nrm | 
						
							| 1 |  | vj | ⊢ 𝑗 | 
						
							| 2 |  | ctop | ⊢ Top | 
						
							| 3 |  | vx | ⊢ 𝑥 | 
						
							| 4 | 1 | cv | ⊢ 𝑗 | 
						
							| 5 |  | vy | ⊢ 𝑦 | 
						
							| 6 |  | ccld | ⊢ Clsd | 
						
							| 7 | 4 6 | cfv | ⊢ ( Clsd ‘ 𝑗 ) | 
						
							| 8 | 3 | cv | ⊢ 𝑥 | 
						
							| 9 | 8 | cpw | ⊢ 𝒫  𝑥 | 
						
							| 10 | 7 9 | cin | ⊢ ( ( Clsd ‘ 𝑗 )  ∩  𝒫  𝑥 ) | 
						
							| 11 |  | vz | ⊢ 𝑧 | 
						
							| 12 | 5 | cv | ⊢ 𝑦 | 
						
							| 13 | 11 | cv | ⊢ 𝑧 | 
						
							| 14 | 12 13 | wss | ⊢ 𝑦  ⊆  𝑧 | 
						
							| 15 |  | ccl | ⊢ cls | 
						
							| 16 | 4 15 | cfv | ⊢ ( cls ‘ 𝑗 ) | 
						
							| 17 | 13 16 | cfv | ⊢ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) | 
						
							| 18 | 17 8 | wss | ⊢ ( ( cls ‘ 𝑗 ) ‘ 𝑧 )  ⊆  𝑥 | 
						
							| 19 | 14 18 | wa | ⊢ ( 𝑦  ⊆  𝑧  ∧  ( ( cls ‘ 𝑗 ) ‘ 𝑧 )  ⊆  𝑥 ) | 
						
							| 20 | 19 11 4 | wrex | ⊢ ∃ 𝑧  ∈  𝑗 ( 𝑦  ⊆  𝑧  ∧  ( ( cls ‘ 𝑗 ) ‘ 𝑧 )  ⊆  𝑥 ) | 
						
							| 21 | 20 5 10 | wral | ⊢ ∀ 𝑦  ∈  ( ( Clsd ‘ 𝑗 )  ∩  𝒫  𝑥 ) ∃ 𝑧  ∈  𝑗 ( 𝑦  ⊆  𝑧  ∧  ( ( cls ‘ 𝑗 ) ‘ 𝑧 )  ⊆  𝑥 ) | 
						
							| 22 | 21 3 4 | wral | ⊢ ∀ 𝑥  ∈  𝑗 ∀ 𝑦  ∈  ( ( Clsd ‘ 𝑗 )  ∩  𝒫  𝑥 ) ∃ 𝑧  ∈  𝑗 ( 𝑦  ⊆  𝑧  ∧  ( ( cls ‘ 𝑗 ) ‘ 𝑧 )  ⊆  𝑥 ) | 
						
							| 23 | 22 1 2 | crab | ⊢ { 𝑗  ∈  Top  ∣  ∀ 𝑥  ∈  𝑗 ∀ 𝑦  ∈  ( ( Clsd ‘ 𝑗 )  ∩  𝒫  𝑥 ) ∃ 𝑧  ∈  𝑗 ( 𝑦  ⊆  𝑧  ∧  ( ( cls ‘ 𝑗 ) ‘ 𝑧 )  ⊆  𝑥 ) } | 
						
							| 24 | 0 23 | wceq | ⊢ Nrm  =  { 𝑗  ∈  Top  ∣  ∀ 𝑥  ∈  𝑗 ∀ 𝑦  ∈  ( ( Clsd ‘ 𝑗 )  ∩  𝒫  𝑥 ) ∃ 𝑧  ∈  𝑗 ( 𝑦  ⊆  𝑧  ∧  ( ( cls ‘ 𝑗 ) ‘ 𝑧 )  ⊆  𝑥 ) } |