Step |
Hyp |
Ref |
Expression |
0 |
|
cnrm |
⊢ Nrm |
1 |
|
vj |
⊢ 𝑗 |
2 |
|
ctop |
⊢ Top |
3 |
|
vx |
⊢ 𝑥 |
4 |
1
|
cv |
⊢ 𝑗 |
5 |
|
vy |
⊢ 𝑦 |
6 |
|
ccld |
⊢ Clsd |
7 |
4 6
|
cfv |
⊢ ( Clsd ‘ 𝑗 ) |
8 |
3
|
cv |
⊢ 𝑥 |
9 |
8
|
cpw |
⊢ 𝒫 𝑥 |
10 |
7 9
|
cin |
⊢ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) |
11 |
|
vz |
⊢ 𝑧 |
12 |
5
|
cv |
⊢ 𝑦 |
13 |
11
|
cv |
⊢ 𝑧 |
14 |
12 13
|
wss |
⊢ 𝑦 ⊆ 𝑧 |
15 |
|
ccl |
⊢ cls |
16 |
4 15
|
cfv |
⊢ ( cls ‘ 𝑗 ) |
17 |
13 16
|
cfv |
⊢ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) |
18 |
17 8
|
wss |
⊢ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 |
19 |
14 18
|
wa |
⊢ ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) |
20 |
19 11 4
|
wrex |
⊢ ∃ 𝑧 ∈ 𝑗 ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) |
21 |
20 5 10
|
wral |
⊢ ∀ 𝑦 ∈ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) ∃ 𝑧 ∈ 𝑗 ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) |
22 |
21 3 4
|
wral |
⊢ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) ∃ 𝑧 ∈ 𝑗 ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) |
23 |
22 1 2
|
crab |
⊢ { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) ∃ 𝑧 ∈ 𝑗 ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) } |
24 |
0 23
|
wceq |
⊢ Nrm = { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) ∃ 𝑧 ∈ 𝑗 ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) } |