| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cnsg | ⊢ NrmSGrp | 
						
							| 1 |  | vw | ⊢ 𝑤 | 
						
							| 2 |  | cgrp | ⊢ Grp | 
						
							| 3 |  | vs | ⊢ 𝑠 | 
						
							| 4 |  | csubg | ⊢ SubGrp | 
						
							| 5 | 1 | cv | ⊢ 𝑤 | 
						
							| 6 | 5 4 | cfv | ⊢ ( SubGrp ‘ 𝑤 ) | 
						
							| 7 |  | cbs | ⊢ Base | 
						
							| 8 | 5 7 | cfv | ⊢ ( Base ‘ 𝑤 ) | 
						
							| 9 |  | vb | ⊢ 𝑏 | 
						
							| 10 |  | cplusg | ⊢ +g | 
						
							| 11 | 5 10 | cfv | ⊢ ( +g ‘ 𝑤 ) | 
						
							| 12 |  | vp | ⊢ 𝑝 | 
						
							| 13 |  | vx | ⊢ 𝑥 | 
						
							| 14 | 9 | cv | ⊢ 𝑏 | 
						
							| 15 |  | vy | ⊢ 𝑦 | 
						
							| 16 | 13 | cv | ⊢ 𝑥 | 
						
							| 17 | 12 | cv | ⊢ 𝑝 | 
						
							| 18 | 15 | cv | ⊢ 𝑦 | 
						
							| 19 | 16 18 17 | co | ⊢ ( 𝑥 𝑝 𝑦 ) | 
						
							| 20 | 3 | cv | ⊢ 𝑠 | 
						
							| 21 | 19 20 | wcel | ⊢ ( 𝑥 𝑝 𝑦 )  ∈  𝑠 | 
						
							| 22 | 18 16 17 | co | ⊢ ( 𝑦 𝑝 𝑥 ) | 
						
							| 23 | 22 20 | wcel | ⊢ ( 𝑦 𝑝 𝑥 )  ∈  𝑠 | 
						
							| 24 | 21 23 | wb | ⊢ ( ( 𝑥 𝑝 𝑦 )  ∈  𝑠  ↔  ( 𝑦 𝑝 𝑥 )  ∈  𝑠 ) | 
						
							| 25 | 24 15 14 | wral | ⊢ ∀ 𝑦  ∈  𝑏 ( ( 𝑥 𝑝 𝑦 )  ∈  𝑠  ↔  ( 𝑦 𝑝 𝑥 )  ∈  𝑠 ) | 
						
							| 26 | 25 13 14 | wral | ⊢ ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( ( 𝑥 𝑝 𝑦 )  ∈  𝑠  ↔  ( 𝑦 𝑝 𝑥 )  ∈  𝑠 ) | 
						
							| 27 | 26 12 11 | wsbc | ⊢ [ ( +g ‘ 𝑤 )  /  𝑝 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( ( 𝑥 𝑝 𝑦 )  ∈  𝑠  ↔  ( 𝑦 𝑝 𝑥 )  ∈  𝑠 ) | 
						
							| 28 | 27 9 8 | wsbc | ⊢ [ ( Base ‘ 𝑤 )  /  𝑏 ] [ ( +g ‘ 𝑤 )  /  𝑝 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( ( 𝑥 𝑝 𝑦 )  ∈  𝑠  ↔  ( 𝑦 𝑝 𝑥 )  ∈  𝑠 ) | 
						
							| 29 | 28 3 6 | crab | ⊢ { 𝑠  ∈  ( SubGrp ‘ 𝑤 )  ∣  [ ( Base ‘ 𝑤 )  /  𝑏 ] [ ( +g ‘ 𝑤 )  /  𝑝 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( ( 𝑥 𝑝 𝑦 )  ∈  𝑠  ↔  ( 𝑦 𝑝 𝑥 )  ∈  𝑠 ) } | 
						
							| 30 | 1 2 29 | cmpt | ⊢ ( 𝑤  ∈  Grp  ↦  { 𝑠  ∈  ( SubGrp ‘ 𝑤 )  ∣  [ ( Base ‘ 𝑤 )  /  𝑏 ] [ ( +g ‘ 𝑤 )  /  𝑝 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( ( 𝑥 𝑝 𝑦 )  ∈  𝑠  ↔  ( 𝑦 𝑝 𝑥 )  ∈  𝑠 ) } ) | 
						
							| 31 | 0 30 | wceq | ⊢ NrmSGrp  =  ( 𝑤  ∈  Grp  ↦  { 𝑠  ∈  ( SubGrp ‘ 𝑤 )  ∣  [ ( Base ‘ 𝑤 )  /  𝑏 ] [ ( +g ‘ 𝑤 )  /  𝑝 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( ( 𝑥 𝑝 𝑦 )  ∈  𝑠  ↔  ( 𝑦 𝑝 𝑥 )  ∈  𝑠 ) } ) |