| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cnv | 
							⊢ NrmCVec  | 
						
						
							| 1 | 
							
								
							 | 
							vg | 
							⊢ 𝑔  | 
						
						
							| 2 | 
							
								
							 | 
							vs | 
							⊢ 𝑠  | 
						
						
							| 3 | 
							
								
							 | 
							vn | 
							⊢ 𝑛  | 
						
						
							| 4 | 
							
								1
							 | 
							cv | 
							⊢ 𝑔  | 
						
						
							| 5 | 
							
								2
							 | 
							cv | 
							⊢ 𝑠  | 
						
						
							| 6 | 
							
								4 5
							 | 
							cop | 
							⊢ 〈 𝑔 ,  𝑠 〉  | 
						
						
							| 7 | 
							
								
							 | 
							cvc | 
							⊢ CVecOLD  | 
						
						
							| 8 | 
							
								6 7
							 | 
							wcel | 
							⊢ 〈 𝑔 ,  𝑠 〉  ∈  CVecOLD  | 
						
						
							| 9 | 
							
								3
							 | 
							cv | 
							⊢ 𝑛  | 
						
						
							| 10 | 
							
								4
							 | 
							crn | 
							⊢ ran  𝑔  | 
						
						
							| 11 | 
							
								
							 | 
							cr | 
							⊢ ℝ  | 
						
						
							| 12 | 
							
								10 11 9
							 | 
							wf | 
							⊢ 𝑛 : ran  𝑔 ⟶ ℝ  | 
						
						
							| 13 | 
							
								
							 | 
							vx | 
							⊢ 𝑥  | 
						
						
							| 14 | 
							
								13
							 | 
							cv | 
							⊢ 𝑥  | 
						
						
							| 15 | 
							
								14 9
							 | 
							cfv | 
							⊢ ( 𝑛 ‘ 𝑥 )  | 
						
						
							| 16 | 
							
								
							 | 
							cc0 | 
							⊢ 0  | 
						
						
							| 17 | 
							
								15 16
							 | 
							wceq | 
							⊢ ( 𝑛 ‘ 𝑥 )  =  0  | 
						
						
							| 18 | 
							
								
							 | 
							cgi | 
							⊢ GId  | 
						
						
							| 19 | 
							
								4 18
							 | 
							cfv | 
							⊢ ( GId ‘ 𝑔 )  | 
						
						
							| 20 | 
							
								14 19
							 | 
							wceq | 
							⊢ 𝑥  =  ( GId ‘ 𝑔 )  | 
						
						
							| 21 | 
							
								17 20
							 | 
							wi | 
							⊢ ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  ( GId ‘ 𝑔 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							vy | 
							⊢ 𝑦  | 
						
						
							| 23 | 
							
								
							 | 
							cc | 
							⊢ ℂ  | 
						
						
							| 24 | 
							
								22
							 | 
							cv | 
							⊢ 𝑦  | 
						
						
							| 25 | 
							
								24 14 5
							 | 
							co | 
							⊢ ( 𝑦 𝑠 𝑥 )  | 
						
						
							| 26 | 
							
								25 9
							 | 
							cfv | 
							⊢ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							cabs | 
							⊢ abs  | 
						
						
							| 28 | 
							
								24 27
							 | 
							cfv | 
							⊢ ( abs ‘ 𝑦 )  | 
						
						
							| 29 | 
							
								
							 | 
							cmul | 
							⊢  ·   | 
						
						
							| 30 | 
							
								28 15 29
							 | 
							co | 
							⊢ ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  | 
						
						
							| 31 | 
							
								26 30
							 | 
							wceq | 
							⊢ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  | 
						
						
							| 32 | 
							
								31 22 23
							 | 
							wral | 
							⊢ ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  | 
						
						
							| 33 | 
							
								14 24 4
							 | 
							co | 
							⊢ ( 𝑥 𝑔 𝑦 )  | 
						
						
							| 34 | 
							
								33 9
							 | 
							cfv | 
							⊢ ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) )  | 
						
						
							| 35 | 
							
								
							 | 
							cle | 
							⊢  ≤   | 
						
						
							| 36 | 
							
								
							 | 
							caddc | 
							⊢  +   | 
						
						
							| 37 | 
							
								24 9
							 | 
							cfv | 
							⊢ ( 𝑛 ‘ 𝑦 )  | 
						
						
							| 38 | 
							
								15 37 36
							 | 
							co | 
							⊢ ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) )  | 
						
						
							| 39 | 
							
								34 38 35
							 | 
							wbr | 
							⊢ ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) )  | 
						
						
							| 40 | 
							
								39 22 10
							 | 
							wral | 
							⊢ ∀ 𝑦  ∈  ran  𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) )  | 
						
						
							| 41 | 
							
								21 32 40
							 | 
							w3a | 
							⊢ ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  ( GId ‘ 𝑔 ) )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  ran  𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) )  | 
						
						
							| 42 | 
							
								41 13 10
							 | 
							wral | 
							⊢ ∀ 𝑥  ∈  ran  𝑔 ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  ( GId ‘ 𝑔 ) )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  ran  𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) )  | 
						
						
							| 43 | 
							
								8 12 42
							 | 
							w3a | 
							⊢ ( 〈 𝑔 ,  𝑠 〉  ∈  CVecOLD  ∧  𝑛 : ran  𝑔 ⟶ ℝ  ∧  ∀ 𝑥  ∈  ran  𝑔 ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  ( GId ‘ 𝑔 ) )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  ran  𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) ) )  | 
						
						
							| 44 | 
							
								43 1 2 3
							 | 
							coprab | 
							⊢ { 〈 〈 𝑔 ,  𝑠 〉 ,  𝑛 〉  ∣  ( 〈 𝑔 ,  𝑠 〉  ∈  CVecOLD  ∧  𝑛 : ran  𝑔 ⟶ ℝ  ∧  ∀ 𝑥  ∈  ran  𝑔 ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  ( GId ‘ 𝑔 ) )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  ran  𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) ) ) }  | 
						
						
							| 45 | 
							
								0 44
							 | 
							wceq | 
							⊢ NrmCVec  =  { 〈 〈 𝑔 ,  𝑠 〉 ,  𝑛 〉  ∣  ( 〈 𝑔 ,  𝑠 〉  ∈  CVecOLD  ∧  𝑛 : ran  𝑔 ⟶ ℝ  ∧  ∀ 𝑥  ∈  ran  𝑔 ( ( ( 𝑛 ‘ 𝑥 )  =  0  →  𝑥  =  ( GId ‘ 𝑔 ) )  ∧  ∀ 𝑦  ∈  ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑛 ‘ 𝑥 ) )  ∧  ∀ 𝑦  ∈  ran  𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) )  ≤  ( ( 𝑛 ‘ 𝑥 )  +  ( 𝑛 ‘ 𝑦 ) ) ) ) }  |