Description: A normed vector space is a normed module which is also a vector space. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-nvc | ⊢ NrmVec = ( NrmMod ∩ LVec ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cnvc | ⊢ NrmVec | |
1 | cnlm | ⊢ NrmMod | |
2 | clvec | ⊢ LVec | |
3 | 1 2 | cin | ⊢ ( NrmMod ∩ LVec ) |
4 | 0 3 | wceq | ⊢ NrmVec = ( NrmMod ∩ LVec ) |