Description: A normed vector space is a normed module which is also a vector space. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-nvc | ⊢ NrmVec = ( NrmMod ∩ LVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnvc | ⊢ NrmVec | |
| 1 | cnlm | ⊢ NrmMod | |
| 2 | clvec | ⊢ LVec | |
| 3 | 1 2 | cin | ⊢ ( NrmMod ∩ LVec ) |
| 4 | 0 3 | wceq | ⊢ NrmVec = ( NrmMod ∩ LVec ) |