Description: Define the ordinal addition operation. (Contributed by NM, 3-May-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | df-oadd | ⊢ +o = ( 𝑥 ∈ On , 𝑦 ∈ On ↦ ( rec ( ( 𝑧 ∈ V ↦ suc 𝑧 ) , 𝑥 ) ‘ 𝑦 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | coa | ⊢ +o | |
1 | vx | ⊢ 𝑥 | |
2 | con0 | ⊢ On | |
3 | vy | ⊢ 𝑦 | |
4 | vz | ⊢ 𝑧 | |
5 | cvv | ⊢ V | |
6 | 4 | cv | ⊢ 𝑧 |
7 | 6 | csuc | ⊢ suc 𝑧 |
8 | 4 5 7 | cmpt | ⊢ ( 𝑧 ∈ V ↦ suc 𝑧 ) |
9 | 1 | cv | ⊢ 𝑥 |
10 | 8 9 | crdg | ⊢ rec ( ( 𝑧 ∈ V ↦ suc 𝑧 ) , 𝑥 ) |
11 | 3 | cv | ⊢ 𝑦 |
12 | 11 10 | cfv | ⊢ ( rec ( ( 𝑧 ∈ V ↦ suc 𝑧 ) , 𝑥 ) ‘ 𝑦 ) |
13 | 1 3 2 2 12 | cmpo | ⊢ ( 𝑥 ∈ On , 𝑦 ∈ On ↦ ( rec ( ( 𝑧 ∈ V ↦ suc 𝑧 ) , 𝑥 ) ‘ 𝑦 ) ) |
14 | 0 13 | wceq | ⊢ +o = ( 𝑥 ∈ On , 𝑦 ∈ On ↦ ( rec ( ( 𝑧 ∈ V ↦ suc 𝑧 ) , 𝑥 ) ‘ 𝑦 ) ) |