Metamath Proof Explorer


Definition df-oadd

Description: Define the ordinal addition operation. (Contributed by NM, 3-May-1995)

Ref Expression
Assertion df-oadd +o = ( 𝑥 ∈ On , 𝑦 ∈ On ↦ ( rec ( ( 𝑧 ∈ V ↦ suc 𝑧 ) , 𝑥 ) ‘ 𝑦 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 coa +o
1 vx 𝑥
2 con0 On
3 vy 𝑦
4 vz 𝑧
5 cvv V
6 4 cv 𝑧
7 6 csuc suc 𝑧
8 4 5 7 cmpt ( 𝑧 ∈ V ↦ suc 𝑧 )
9 1 cv 𝑥
10 8 9 crdg rec ( ( 𝑧 ∈ V ↦ suc 𝑧 ) , 𝑥 )
11 3 cv 𝑦
12 11 10 cfv ( rec ( ( 𝑧 ∈ V ↦ suc 𝑧 ) , 𝑥 ) ‘ 𝑦 )
13 1 3 2 2 12 cmpo ( 𝑥 ∈ On , 𝑦 ∈ On ↦ ( rec ( ( 𝑧 ∈ V ↦ suc 𝑧 ) , 𝑥 ) ‘ 𝑦 ) )
14 0 13 wceq +o = ( 𝑥 ∈ On , 𝑦 ∈ On ↦ ( rec ( ( 𝑧 ∈ V ↦ suc 𝑧 ) , 𝑥 ) ‘ 𝑦 ) )