Step |
Hyp |
Ref |
Expression |
0 |
|
cod |
⊢ od |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cvv |
⊢ V |
3 |
|
vx |
⊢ 𝑥 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ 𝑔 |
6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
7 |
|
vn |
⊢ 𝑛 |
8 |
|
cn |
⊢ ℕ |
9 |
7
|
cv |
⊢ 𝑛 |
10 |
|
cmg |
⊢ .g |
11 |
5 10
|
cfv |
⊢ ( .g ‘ 𝑔 ) |
12 |
3
|
cv |
⊢ 𝑥 |
13 |
9 12 11
|
co |
⊢ ( 𝑛 ( .g ‘ 𝑔 ) 𝑥 ) |
14 |
|
c0g |
⊢ 0g |
15 |
5 14
|
cfv |
⊢ ( 0g ‘ 𝑔 ) |
16 |
13 15
|
wceq |
⊢ ( 𝑛 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) |
17 |
16 7 8
|
crab |
⊢ { 𝑛 ∈ ℕ ∣ ( 𝑛 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } |
18 |
|
vi |
⊢ 𝑖 |
19 |
18
|
cv |
⊢ 𝑖 |
20 |
|
c0 |
⊢ ∅ |
21 |
19 20
|
wceq |
⊢ 𝑖 = ∅ |
22 |
|
cc0 |
⊢ 0 |
23 |
|
cr |
⊢ ℝ |
24 |
|
clt |
⊢ < |
25 |
19 23 24
|
cinf |
⊢ inf ( 𝑖 , ℝ , < ) |
26 |
21 22 25
|
cif |
⊢ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) |
27 |
18 17 26
|
csb |
⊢ ⦋ { 𝑛 ∈ ℕ ∣ ( 𝑛 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) |
28 |
3 6 27
|
cmpt |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ⦋ { 𝑛 ∈ ℕ ∣ ( 𝑛 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) |
29 |
1 2 28
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ⦋ { 𝑛 ∈ ℕ ∣ ( 𝑛 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |
30 |
0 29
|
wceq |
⊢ od = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ⦋ { 𝑛 ∈ ℕ ∣ ( 𝑛 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |