Metamath Proof Explorer
Description: Define the set of odd numbers. (Contributed by AV, 14-Jun-2020)
|
|
Ref |
Expression |
|
Assertion |
df-odd |
⊢ Odd = { 𝑧 ∈ ℤ ∣ ( ( 𝑧 + 1 ) / 2 ) ∈ ℤ } |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
codd |
⊢ Odd |
1 |
|
vz |
⊢ 𝑧 |
2 |
|
cz |
⊢ ℤ |
3 |
1
|
cv |
⊢ 𝑧 |
4 |
|
caddc |
⊢ + |
5 |
|
c1 |
⊢ 1 |
6 |
3 5 4
|
co |
⊢ ( 𝑧 + 1 ) |
7 |
|
cdiv |
⊢ / |
8 |
|
c2 |
⊢ 2 |
9 |
6 8 7
|
co |
⊢ ( ( 𝑧 + 1 ) / 2 ) |
10 |
9 2
|
wcel |
⊢ ( ( 𝑧 + 1 ) / 2 ) ∈ ℤ |
11 |
10 1 2
|
crab |
⊢ { 𝑧 ∈ ℤ ∣ ( ( 𝑧 + 1 ) / 2 ) ∈ ℤ } |
12 |
0 11
|
wceq |
⊢ Odd = { 𝑧 ∈ ℤ ∣ ( ( 𝑧 + 1 ) / 2 ) ∈ ℤ } |