Metamath Proof Explorer


Definition df-odd

Description: Define the set of odd numbers. (Contributed by AV, 14-Jun-2020)

Ref Expression
Assertion df-odd Odd = { 𝑧 ∈ ℤ ∣ ( ( 𝑧 + 1 ) / 2 ) ∈ ℤ }

Detailed syntax breakdown

Step Hyp Ref Expression
0 codd Odd
1 vz 𝑧
2 cz
3 1 cv 𝑧
4 caddc +
5 c1 1
6 3 5 4 co ( 𝑧 + 1 )
7 cdiv /
8 c2 2
9 6 8 7 co ( ( 𝑧 + 1 ) / 2 )
10 9 2 wcel ( ( 𝑧 + 1 ) / 2 ) ∈ ℤ
11 10 1 2 crab { 𝑧 ∈ ℤ ∣ ( ( 𝑧 + 1 ) / 2 ) ∈ ℤ }
12 0 11 wceq Odd = { 𝑧 ∈ ℤ ∣ ( ( 𝑧 + 1 ) / 2 ) ∈ ℤ }