Metamath Proof Explorer


Definition df-odu

Description: Define the dual of an ordered structure, which replaces the order component of the structure with its reverse. See odubas , oduleval , and oduleg for its principal properties.

EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass . (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Assertion df-odu ODual = ( 𝑤 ∈ V ↦ ( 𝑤 sSet ⟨ ( le ‘ ndx ) , ( le ‘ 𝑤 ) ⟩ ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 codu ODual
1 vw 𝑤
2 cvv V
3 1 cv 𝑤
4 csts sSet
5 cple le
6 cnx ndx
7 6 5 cfv ( le ‘ ndx )
8 3 5 cfv ( le ‘ 𝑤 )
9 8 ccnv ( le ‘ 𝑤 )
10 7 9 cop ⟨ ( le ‘ ndx ) , ( le ‘ 𝑤 ) ⟩
11 3 10 4 co ( 𝑤 sSet ⟨ ( le ‘ ndx ) , ( le ‘ 𝑤 ) ⟩ )
12 1 2 11 cmpt ( 𝑤 ∈ V ↦ ( 𝑤 sSet ⟨ ( le ‘ ndx ) , ( le ‘ 𝑤 ) ⟩ ) )
13 0 12 wceq ODual = ( 𝑤 ∈ V ↦ ( 𝑤 sSet ⟨ ( le ‘ ndx ) , ( le ‘ 𝑤 ) ⟩ ) )