| Step |
Hyp |
Ref |
Expression |
| 0 |
|
codz |
⊢ odℤ |
| 1 |
|
vn |
⊢ 𝑛 |
| 2 |
|
cn |
⊢ ℕ |
| 3 |
|
vx |
⊢ 𝑥 |
| 4 |
|
cz |
⊢ ℤ |
| 5 |
3
|
cv |
⊢ 𝑥 |
| 6 |
|
cgcd |
⊢ gcd |
| 7 |
1
|
cv |
⊢ 𝑛 |
| 8 |
5 7 6
|
co |
⊢ ( 𝑥 gcd 𝑛 ) |
| 9 |
|
c1 |
⊢ 1 |
| 10 |
8 9
|
wceq |
⊢ ( 𝑥 gcd 𝑛 ) = 1 |
| 11 |
10 3 4
|
crab |
⊢ { 𝑥 ∈ ℤ ∣ ( 𝑥 gcd 𝑛 ) = 1 } |
| 12 |
|
vm |
⊢ 𝑚 |
| 13 |
|
cdvds |
⊢ ∥ |
| 14 |
|
cexp |
⊢ ↑ |
| 15 |
12
|
cv |
⊢ 𝑚 |
| 16 |
5 15 14
|
co |
⊢ ( 𝑥 ↑ 𝑚 ) |
| 17 |
|
cmin |
⊢ − |
| 18 |
16 9 17
|
co |
⊢ ( ( 𝑥 ↑ 𝑚 ) − 1 ) |
| 19 |
7 18 13
|
wbr |
⊢ 𝑛 ∥ ( ( 𝑥 ↑ 𝑚 ) − 1 ) |
| 20 |
19 12 2
|
crab |
⊢ { 𝑚 ∈ ℕ ∣ 𝑛 ∥ ( ( 𝑥 ↑ 𝑚 ) − 1 ) } |
| 21 |
|
cr |
⊢ ℝ |
| 22 |
|
clt |
⊢ < |
| 23 |
20 21 22
|
cinf |
⊢ inf ( { 𝑚 ∈ ℕ ∣ 𝑛 ∥ ( ( 𝑥 ↑ 𝑚 ) − 1 ) } , ℝ , < ) |
| 24 |
3 11 23
|
cmpt |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ℤ ∣ ( 𝑥 gcd 𝑛 ) = 1 } ↦ inf ( { 𝑚 ∈ ℕ ∣ 𝑛 ∥ ( ( 𝑥 ↑ 𝑚 ) − 1 ) } , ℝ , < ) ) |
| 25 |
1 2 24
|
cmpt |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ { 𝑥 ∈ ℤ ∣ ( 𝑥 gcd 𝑛 ) = 1 } ↦ inf ( { 𝑚 ∈ ℕ ∣ 𝑛 ∥ ( ( 𝑥 ↑ 𝑚 ) − 1 ) } , ℝ , < ) ) ) |
| 26 |
0 25
|
wceq |
⊢ odℤ = ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ { 𝑥 ∈ ℤ ∣ ( 𝑥 gcd 𝑛 ) = 1 } ↦ inf ( { 𝑚 ∈ ℕ ∣ 𝑛 ∥ ( ( 𝑥 ↑ 𝑚 ) − 1 ) } , ℝ , < ) ) ) |