Metamath Proof Explorer


Definition df-odz

Description: Define the order function on the class of integers modulo N. (Contributed by Mario Carneiro, 23-Feb-2014) (Revised by AV, 26-Sep-2020)

Ref Expression
Assertion df-odz od = ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ { 𝑥 ∈ ℤ ∣ ( 𝑥 gcd 𝑛 ) = 1 } ↦ inf ( { 𝑚 ∈ ℕ ∣ 𝑛 ∥ ( ( 𝑥𝑚 ) − 1 ) } , ℝ , < ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 codz od
1 vn 𝑛
2 cn
3 vx 𝑥
4 cz
5 3 cv 𝑥
6 cgcd gcd
7 1 cv 𝑛
8 5 7 6 co ( 𝑥 gcd 𝑛 )
9 c1 1
10 8 9 wceq ( 𝑥 gcd 𝑛 ) = 1
11 10 3 4 crab { 𝑥 ∈ ℤ ∣ ( 𝑥 gcd 𝑛 ) = 1 }
12 vm 𝑚
13 cdvds
14 cexp
15 12 cv 𝑚
16 5 15 14 co ( 𝑥𝑚 )
17 cmin
18 16 9 17 co ( ( 𝑥𝑚 ) − 1 )
19 7 18 13 wbr 𝑛 ∥ ( ( 𝑥𝑚 ) − 1 )
20 19 12 2 crab { 𝑚 ∈ ℕ ∣ 𝑛 ∥ ( ( 𝑥𝑚 ) − 1 ) }
21 cr
22 clt <
23 20 21 22 cinf inf ( { 𝑚 ∈ ℕ ∣ 𝑛 ∥ ( ( 𝑥𝑚 ) − 1 ) } , ℝ , < )
24 3 11 23 cmpt ( 𝑥 ∈ { 𝑥 ∈ ℤ ∣ ( 𝑥 gcd 𝑛 ) = 1 } ↦ inf ( { 𝑚 ∈ ℕ ∣ 𝑛 ∥ ( ( 𝑥𝑚 ) − 1 ) } , ℝ , < ) )
25 1 2 24 cmpt ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ { 𝑥 ∈ ℤ ∣ ( 𝑥 gcd 𝑛 ) = 1 } ↦ inf ( { 𝑚 ∈ ℕ ∣ 𝑛 ∥ ( ( 𝑥𝑚 ) − 1 ) } , ℝ , < ) ) )
26 0 25 wceq od = ( 𝑛 ∈ ℕ ↦ ( 𝑥 ∈ { 𝑥 ∈ ℤ ∣ ( 𝑥 gcd 𝑛 ) = 1 } ↦ inf ( { 𝑚 ∈ ℕ ∣ 𝑛 ∥ ( ( 𝑥𝑚 ) − 1 ) } , ℝ , < ) ) )