| Step |
Hyp |
Ref |
Expression |
| 0 |
|
coe |
⊢ ↑o |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
con0 |
⊢ On |
| 3 |
|
vy |
⊢ 𝑦 |
| 4 |
1
|
cv |
⊢ 𝑥 |
| 5 |
|
c0 |
⊢ ∅ |
| 6 |
4 5
|
wceq |
⊢ 𝑥 = ∅ |
| 7 |
|
c1o |
⊢ 1o |
| 8 |
3
|
cv |
⊢ 𝑦 |
| 9 |
7 8
|
cdif |
⊢ ( 1o ∖ 𝑦 ) |
| 10 |
|
vz |
⊢ 𝑧 |
| 11 |
|
cvv |
⊢ V |
| 12 |
10
|
cv |
⊢ 𝑧 |
| 13 |
|
comu |
⊢ ·o |
| 14 |
12 4 13
|
co |
⊢ ( 𝑧 ·o 𝑥 ) |
| 15 |
10 11 14
|
cmpt |
⊢ ( 𝑧 ∈ V ↦ ( 𝑧 ·o 𝑥 ) ) |
| 16 |
15 7
|
crdg |
⊢ rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ·o 𝑥 ) ) , 1o ) |
| 17 |
8 16
|
cfv |
⊢ ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ·o 𝑥 ) ) , 1o ) ‘ 𝑦 ) |
| 18 |
6 9 17
|
cif |
⊢ if ( 𝑥 = ∅ , ( 1o ∖ 𝑦 ) , ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ·o 𝑥 ) ) , 1o ) ‘ 𝑦 ) ) |
| 19 |
1 3 2 2 18
|
cmpo |
⊢ ( 𝑥 ∈ On , 𝑦 ∈ On ↦ if ( 𝑥 = ∅ , ( 1o ∖ 𝑦 ) , ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ·o 𝑥 ) ) , 1o ) ‘ 𝑦 ) ) ) |
| 20 |
0 19
|
wceq |
⊢ ↑o = ( 𝑥 ∈ On , 𝑦 ∈ On ↦ if ( 𝑥 = ∅ , ( 1o ∖ 𝑦 ) , ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ·o 𝑥 ) ) , 1o ) ‘ 𝑦 ) ) ) |