Metamath Proof Explorer


Definition df-of

Description: Define the function operation map. The definition is designed so that if R is a binary operation, then oF R is the analogous operation on functions which corresponds to applying R pointwise to the values of the functions. (Contributed by Mario Carneiro, 20-Jul-2014)

Ref Expression
Assertion df-of f 𝑅 = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR 𝑅
1 0 cof f 𝑅
2 vf 𝑓
3 cvv V
4 vg 𝑔
5 vx 𝑥
6 2 cv 𝑓
7 6 cdm dom 𝑓
8 4 cv 𝑔
9 8 cdm dom 𝑔
10 7 9 cin ( dom 𝑓 ∩ dom 𝑔 )
11 5 cv 𝑥
12 11 6 cfv ( 𝑓𝑥 )
13 11 8 cfv ( 𝑔𝑥 )
14 12 13 0 co ( ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) )
15 5 10 14 cmpt ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) ) )
16 2 4 3 3 15 cmpo ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) ) ) )
17 1 16 wceq f 𝑅 = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) ) ) )