| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cops |
⊢ OP |
| 1 |
|
vp |
⊢ 𝑝 |
| 2 |
|
cpo |
⊢ Poset |
| 3 |
|
cbs |
⊢ Base |
| 4 |
1
|
cv |
⊢ 𝑝 |
| 5 |
4 3
|
cfv |
⊢ ( Base ‘ 𝑝 ) |
| 6 |
|
club |
⊢ lub |
| 7 |
4 6
|
cfv |
⊢ ( lub ‘ 𝑝 ) |
| 8 |
7
|
cdm |
⊢ dom ( lub ‘ 𝑝 ) |
| 9 |
5 8
|
wcel |
⊢ ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) |
| 10 |
|
cglb |
⊢ glb |
| 11 |
4 10
|
cfv |
⊢ ( glb ‘ 𝑝 ) |
| 12 |
11
|
cdm |
⊢ dom ( glb ‘ 𝑝 ) |
| 13 |
5 12
|
wcel |
⊢ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) |
| 14 |
9 13
|
wa |
⊢ ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ) |
| 15 |
|
vo |
⊢ 𝑜 |
| 16 |
15
|
cv |
⊢ 𝑜 |
| 17 |
|
coc |
⊢ oc |
| 18 |
4 17
|
cfv |
⊢ ( oc ‘ 𝑝 ) |
| 19 |
16 18
|
wceq |
⊢ 𝑜 = ( oc ‘ 𝑝 ) |
| 20 |
|
va |
⊢ 𝑎 |
| 21 |
|
vb |
⊢ 𝑏 |
| 22 |
20
|
cv |
⊢ 𝑎 |
| 23 |
22 16
|
cfv |
⊢ ( 𝑜 ‘ 𝑎 ) |
| 24 |
23 5
|
wcel |
⊢ ( 𝑜 ‘ 𝑎 ) ∈ ( Base ‘ 𝑝 ) |
| 25 |
23 16
|
cfv |
⊢ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) |
| 26 |
25 22
|
wceq |
⊢ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) = 𝑎 |
| 27 |
|
cple |
⊢ le |
| 28 |
4 27
|
cfv |
⊢ ( le ‘ 𝑝 ) |
| 29 |
21
|
cv |
⊢ 𝑏 |
| 30 |
22 29 28
|
wbr |
⊢ 𝑎 ( le ‘ 𝑝 ) 𝑏 |
| 31 |
29 16
|
cfv |
⊢ ( 𝑜 ‘ 𝑏 ) |
| 32 |
31 23 28
|
wbr |
⊢ ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) |
| 33 |
30 32
|
wi |
⊢ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) |
| 34 |
24 26 33
|
w3a |
⊢ ( ( 𝑜 ‘ 𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) ) |
| 35 |
|
cjn |
⊢ join |
| 36 |
4 35
|
cfv |
⊢ ( join ‘ 𝑝 ) |
| 37 |
22 23 36
|
co |
⊢ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) |
| 38 |
|
cp1 |
⊢ 1. |
| 39 |
4 38
|
cfv |
⊢ ( 1. ‘ 𝑝 ) |
| 40 |
37 39
|
wceq |
⊢ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 1. ‘ 𝑝 ) |
| 41 |
|
cmee |
⊢ meet |
| 42 |
4 41
|
cfv |
⊢ ( meet ‘ 𝑝 ) |
| 43 |
22 23 42
|
co |
⊢ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) |
| 44 |
|
cp0 |
⊢ 0. |
| 45 |
4 44
|
cfv |
⊢ ( 0. ‘ 𝑝 ) |
| 46 |
43 45
|
wceq |
⊢ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 0. ‘ 𝑝 ) |
| 47 |
34 40 46
|
w3a |
⊢ ( ( ( 𝑜 ‘ 𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 0. ‘ 𝑝 ) ) |
| 48 |
47 21 5
|
wral |
⊢ ∀ 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜 ‘ 𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 0. ‘ 𝑝 ) ) |
| 49 |
48 20 5
|
wral |
⊢ ∀ 𝑎 ∈ ( Base ‘ 𝑝 ) ∀ 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜 ‘ 𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 0. ‘ 𝑝 ) ) |
| 50 |
19 49
|
wa |
⊢ ( 𝑜 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑝 ) ∀ 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜 ‘ 𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 0. ‘ 𝑝 ) ) ) |
| 51 |
50 15
|
wex |
⊢ ∃ 𝑜 ( 𝑜 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑝 ) ∀ 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜 ‘ 𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 0. ‘ 𝑝 ) ) ) |
| 52 |
14 51
|
wa |
⊢ ( ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ) ∧ ∃ 𝑜 ( 𝑜 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑝 ) ∀ 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜 ‘ 𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 0. ‘ 𝑝 ) ) ) ) |
| 53 |
52 1 2
|
crab |
⊢ { 𝑝 ∈ Poset ∣ ( ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ) ∧ ∃ 𝑜 ( 𝑜 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑝 ) ∀ 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜 ‘ 𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 0. ‘ 𝑝 ) ) ) ) } |
| 54 |
0 53
|
wceq |
⊢ OP = { 𝑝 ∈ Poset ∣ ( ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ) ∧ ∃ 𝑜 ( 𝑜 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑝 ) ∀ 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜 ‘ 𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 0. ‘ 𝑝 ) ) ) ) } |