Step |
Hyp |
Ref |
Expression |
0 |
|
cops |
⊢ OP |
1 |
|
vp |
⊢ 𝑝 |
2 |
|
cpo |
⊢ Poset |
3 |
|
cbs |
⊢ Base |
4 |
1
|
cv |
⊢ 𝑝 |
5 |
4 3
|
cfv |
⊢ ( Base ‘ 𝑝 ) |
6 |
|
club |
⊢ lub |
7 |
4 6
|
cfv |
⊢ ( lub ‘ 𝑝 ) |
8 |
7
|
cdm |
⊢ dom ( lub ‘ 𝑝 ) |
9 |
5 8
|
wcel |
⊢ ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) |
10 |
|
cglb |
⊢ glb |
11 |
4 10
|
cfv |
⊢ ( glb ‘ 𝑝 ) |
12 |
11
|
cdm |
⊢ dom ( glb ‘ 𝑝 ) |
13 |
5 12
|
wcel |
⊢ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) |
14 |
9 13
|
wa |
⊢ ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ) |
15 |
|
vo |
⊢ 𝑜 |
16 |
15
|
cv |
⊢ 𝑜 |
17 |
|
coc |
⊢ oc |
18 |
4 17
|
cfv |
⊢ ( oc ‘ 𝑝 ) |
19 |
16 18
|
wceq |
⊢ 𝑜 = ( oc ‘ 𝑝 ) |
20 |
|
va |
⊢ 𝑎 |
21 |
|
vb |
⊢ 𝑏 |
22 |
20
|
cv |
⊢ 𝑎 |
23 |
22 16
|
cfv |
⊢ ( 𝑜 ‘ 𝑎 ) |
24 |
23 5
|
wcel |
⊢ ( 𝑜 ‘ 𝑎 ) ∈ ( Base ‘ 𝑝 ) |
25 |
23 16
|
cfv |
⊢ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) |
26 |
25 22
|
wceq |
⊢ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) = 𝑎 |
27 |
|
cple |
⊢ le |
28 |
4 27
|
cfv |
⊢ ( le ‘ 𝑝 ) |
29 |
21
|
cv |
⊢ 𝑏 |
30 |
22 29 28
|
wbr |
⊢ 𝑎 ( le ‘ 𝑝 ) 𝑏 |
31 |
29 16
|
cfv |
⊢ ( 𝑜 ‘ 𝑏 ) |
32 |
31 23 28
|
wbr |
⊢ ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) |
33 |
30 32
|
wi |
⊢ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) |
34 |
24 26 33
|
w3a |
⊢ ( ( 𝑜 ‘ 𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) ) |
35 |
|
cjn |
⊢ join |
36 |
4 35
|
cfv |
⊢ ( join ‘ 𝑝 ) |
37 |
22 23 36
|
co |
⊢ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) |
38 |
|
cp1 |
⊢ 1. |
39 |
4 38
|
cfv |
⊢ ( 1. ‘ 𝑝 ) |
40 |
37 39
|
wceq |
⊢ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 1. ‘ 𝑝 ) |
41 |
|
cmee |
⊢ meet |
42 |
4 41
|
cfv |
⊢ ( meet ‘ 𝑝 ) |
43 |
22 23 42
|
co |
⊢ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) |
44 |
|
cp0 |
⊢ 0. |
45 |
4 44
|
cfv |
⊢ ( 0. ‘ 𝑝 ) |
46 |
43 45
|
wceq |
⊢ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 0. ‘ 𝑝 ) |
47 |
34 40 46
|
w3a |
⊢ ( ( ( 𝑜 ‘ 𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 0. ‘ 𝑝 ) ) |
48 |
47 21 5
|
wral |
⊢ ∀ 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜 ‘ 𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 0. ‘ 𝑝 ) ) |
49 |
48 20 5
|
wral |
⊢ ∀ 𝑎 ∈ ( Base ‘ 𝑝 ) ∀ 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜 ‘ 𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 0. ‘ 𝑝 ) ) |
50 |
19 49
|
wa |
⊢ ( 𝑜 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑝 ) ∀ 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜 ‘ 𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 0. ‘ 𝑝 ) ) ) |
51 |
50 15
|
wex |
⊢ ∃ 𝑜 ( 𝑜 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑝 ) ∀ 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜 ‘ 𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 0. ‘ 𝑝 ) ) ) |
52 |
14 51
|
wa |
⊢ ( ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ) ∧ ∃ 𝑜 ( 𝑜 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑝 ) ∀ 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜 ‘ 𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 0. ‘ 𝑝 ) ) ) ) |
53 |
52 1 2
|
crab |
⊢ { 𝑝 ∈ Poset ∣ ( ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ) ∧ ∃ 𝑜 ( 𝑜 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑝 ) ∀ 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜 ‘ 𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 0. ‘ 𝑝 ) ) ) ) } |
54 |
0 53
|
wceq |
⊢ OP = { 𝑝 ∈ Poset ∣ ( ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ) ∧ ∃ 𝑜 ( 𝑜 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑝 ) ∀ 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜 ‘ 𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜 ‘ 𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜 ‘ 𝑏 ) ( le ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜 ‘ 𝑎 ) ) = ( 0. ‘ 𝑝 ) ) ) ) } |