Metamath Proof Explorer


Definition df-oposet

Description: Define the class of orthoposets, which are bounded posets with an orthocomplementation operation. Note that ( Base p ) e. dom ( lub p ) means there is an upper bound 1. , and similarly for the 0. element. (Contributed by NM, 20-Oct-2011) (Revised by NM, 13-Sep-2018)

Ref Expression
Assertion df-oposet OP = { 𝑝 ∈ Poset ∣ ( ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ) ∧ ∃ 𝑜 ( 𝑜 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑝 ) ∀ 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜𝑏 ) ( le ‘ 𝑝 ) ( 𝑜𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜𝑎 ) ) = ( 0. ‘ 𝑝 ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cops OP
1 vp 𝑝
2 cpo Poset
3 cbs Base
4 1 cv 𝑝
5 4 3 cfv ( Base ‘ 𝑝 )
6 club lub
7 4 6 cfv ( lub ‘ 𝑝 )
8 7 cdm dom ( lub ‘ 𝑝 )
9 5 8 wcel ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 )
10 cglb glb
11 4 10 cfv ( glb ‘ 𝑝 )
12 11 cdm dom ( glb ‘ 𝑝 )
13 5 12 wcel ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 )
14 9 13 wa ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) )
15 vo 𝑜
16 15 cv 𝑜
17 coc oc
18 4 17 cfv ( oc ‘ 𝑝 )
19 16 18 wceq 𝑜 = ( oc ‘ 𝑝 )
20 va 𝑎
21 vb 𝑏
22 20 cv 𝑎
23 22 16 cfv ( 𝑜𝑎 )
24 23 5 wcel ( 𝑜𝑎 ) ∈ ( Base ‘ 𝑝 )
25 23 16 cfv ( 𝑜 ‘ ( 𝑜𝑎 ) )
26 25 22 wceq ( 𝑜 ‘ ( 𝑜𝑎 ) ) = 𝑎
27 cple le
28 4 27 cfv ( le ‘ 𝑝 )
29 21 cv 𝑏
30 22 29 28 wbr 𝑎 ( le ‘ 𝑝 ) 𝑏
31 29 16 cfv ( 𝑜𝑏 )
32 31 23 28 wbr ( 𝑜𝑏 ) ( le ‘ 𝑝 ) ( 𝑜𝑎 )
33 30 32 wi ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜𝑏 ) ( le ‘ 𝑝 ) ( 𝑜𝑎 ) )
34 24 26 33 w3a ( ( 𝑜𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜𝑏 ) ( le ‘ 𝑝 ) ( 𝑜𝑎 ) ) )
35 cjn join
36 4 35 cfv ( join ‘ 𝑝 )
37 22 23 36 co ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜𝑎 ) )
38 cp1 1.
39 4 38 cfv ( 1. ‘ 𝑝 )
40 37 39 wceq ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜𝑎 ) ) = ( 1. ‘ 𝑝 )
41 cmee meet
42 4 41 cfv ( meet ‘ 𝑝 )
43 22 23 42 co ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜𝑎 ) )
44 cp0 0.
45 4 44 cfv ( 0. ‘ 𝑝 )
46 43 45 wceq ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜𝑎 ) ) = ( 0. ‘ 𝑝 )
47 34 40 46 w3a ( ( ( 𝑜𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜𝑏 ) ( le ‘ 𝑝 ) ( 𝑜𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜𝑎 ) ) = ( 0. ‘ 𝑝 ) )
48 47 21 5 wral 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜𝑏 ) ( le ‘ 𝑝 ) ( 𝑜𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜𝑎 ) ) = ( 0. ‘ 𝑝 ) )
49 48 20 5 wral 𝑎 ∈ ( Base ‘ 𝑝 ) ∀ 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜𝑏 ) ( le ‘ 𝑝 ) ( 𝑜𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜𝑎 ) ) = ( 0. ‘ 𝑝 ) )
50 19 49 wa ( 𝑜 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑝 ) ∀ 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜𝑏 ) ( le ‘ 𝑝 ) ( 𝑜𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜𝑎 ) ) = ( 0. ‘ 𝑝 ) ) )
51 50 15 wex 𝑜 ( 𝑜 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑝 ) ∀ 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜𝑏 ) ( le ‘ 𝑝 ) ( 𝑜𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜𝑎 ) ) = ( 0. ‘ 𝑝 ) ) )
52 14 51 wa ( ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ) ∧ ∃ 𝑜 ( 𝑜 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑝 ) ∀ 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜𝑏 ) ( le ‘ 𝑝 ) ( 𝑜𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜𝑎 ) ) = ( 0. ‘ 𝑝 ) ) ) )
53 52 1 2 crab { 𝑝 ∈ Poset ∣ ( ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ) ∧ ∃ 𝑜 ( 𝑜 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑝 ) ∀ 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜𝑏 ) ( le ‘ 𝑝 ) ( 𝑜𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜𝑎 ) ) = ( 0. ‘ 𝑝 ) ) ) ) }
54 0 53 wceq OP = { 𝑝 ∈ Poset ∣ ( ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ) ∧ ∃ 𝑜 ( 𝑜 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑝 ) ∀ 𝑏 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑜𝑎 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑜 ‘ ( 𝑜𝑎 ) ) = 𝑎 ∧ ( 𝑎 ( le ‘ 𝑝 ) 𝑏 → ( 𝑜𝑏 ) ( le ‘ 𝑝 ) ( 𝑜𝑎 ) ) ) ∧ ( 𝑎 ( join ‘ 𝑝 ) ( 𝑜𝑎 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑎 ( meet ‘ 𝑝 ) ( 𝑜𝑎 ) ) = ( 0. ‘ 𝑝 ) ) ) ) }