Step |
Hyp |
Ref |
Expression |
0 |
|
coppc |
⊢ oppCat |
1 |
|
vf |
⊢ 𝑓 |
2 |
|
cvv |
⊢ V |
3 |
1
|
cv |
⊢ 𝑓 |
4 |
|
csts |
⊢ sSet |
5 |
|
chom |
⊢ Hom |
6 |
|
cnx |
⊢ ndx |
7 |
6 5
|
cfv |
⊢ ( Hom ‘ ndx ) |
8 |
3 5
|
cfv |
⊢ ( Hom ‘ 𝑓 ) |
9 |
8
|
ctpos |
⊢ tpos ( Hom ‘ 𝑓 ) |
10 |
7 9
|
cop |
⊢ 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑓 ) 〉 |
11 |
3 10 4
|
co |
⊢ ( 𝑓 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑓 ) 〉 ) |
12 |
|
cco |
⊢ comp |
13 |
6 12
|
cfv |
⊢ ( comp ‘ ndx ) |
14 |
|
vu |
⊢ 𝑢 |
15 |
|
cbs |
⊢ Base |
16 |
3 15
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
17 |
16 16
|
cxp |
⊢ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) |
18 |
|
vz |
⊢ 𝑧 |
19 |
18
|
cv |
⊢ 𝑧 |
20 |
|
c2nd |
⊢ 2nd |
21 |
14
|
cv |
⊢ 𝑢 |
22 |
21 20
|
cfv |
⊢ ( 2nd ‘ 𝑢 ) |
23 |
19 22
|
cop |
⊢ 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 |
24 |
3 12
|
cfv |
⊢ ( comp ‘ 𝑓 ) |
25 |
|
c1st |
⊢ 1st |
26 |
21 25
|
cfv |
⊢ ( 1st ‘ 𝑢 ) |
27 |
23 26 24
|
co |
⊢ ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑓 ) ( 1st ‘ 𝑢 ) ) |
28 |
27
|
ctpos |
⊢ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑓 ) ( 1st ‘ 𝑢 ) ) |
29 |
14 18 17 16 28
|
cmpo |
⊢ ( 𝑢 ∈ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) , 𝑧 ∈ ( Base ‘ 𝑓 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑓 ) ( 1st ‘ 𝑢 ) ) ) |
30 |
13 29
|
cop |
⊢ 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) , 𝑧 ∈ ( Base ‘ 𝑓 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑓 ) ( 1st ‘ 𝑢 ) ) ) 〉 |
31 |
11 30 4
|
co |
⊢ ( ( 𝑓 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑓 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) , 𝑧 ∈ ( Base ‘ 𝑓 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑓 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) |
32 |
1 2 31
|
cmpt |
⊢ ( 𝑓 ∈ V ↦ ( ( 𝑓 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑓 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) , 𝑧 ∈ ( Base ‘ 𝑓 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑓 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
33 |
0 32
|
wceq |
⊢ oppCat = ( 𝑓 ∈ V ↦ ( ( 𝑓 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑓 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) , 𝑧 ∈ ( Base ‘ 𝑓 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑓 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |