Metamath Proof Explorer


Definition df-oppc

Description: Define an opposite category, which is the same as the original category but with the direction of arrows the other way around. Definition 3.5 of Adamek p. 25. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion df-oppc oppCat = ( 𝑓 ∈ V ↦ ( ( 𝑓 sSet ⟨ ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑓 ) ⟩ ) sSet ⟨ ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) , 𝑧 ∈ ( Base ‘ 𝑓 ) ↦ tpos ( ⟨ 𝑧 , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝑓 ) ( 1st𝑢 ) ) ) ⟩ ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 coppc oppCat
1 vf 𝑓
2 cvv V
3 1 cv 𝑓
4 csts sSet
5 chom Hom
6 cnx ndx
7 6 5 cfv ( Hom ‘ ndx )
8 3 5 cfv ( Hom ‘ 𝑓 )
9 8 ctpos tpos ( Hom ‘ 𝑓 )
10 7 9 cop ⟨ ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑓 ) ⟩
11 3 10 4 co ( 𝑓 sSet ⟨ ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑓 ) ⟩ )
12 cco comp
13 6 12 cfv ( comp ‘ ndx )
14 vu 𝑢
15 cbs Base
16 3 15 cfv ( Base ‘ 𝑓 )
17 16 16 cxp ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) )
18 vz 𝑧
19 18 cv 𝑧
20 c2nd 2nd
21 14 cv 𝑢
22 21 20 cfv ( 2nd𝑢 )
23 19 22 cop 𝑧 , ( 2nd𝑢 ) ⟩
24 3 12 cfv ( comp ‘ 𝑓 )
25 c1st 1st
26 21 25 cfv ( 1st𝑢 )
27 23 26 24 co ( ⟨ 𝑧 , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝑓 ) ( 1st𝑢 ) )
28 27 ctpos tpos ( ⟨ 𝑧 , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝑓 ) ( 1st𝑢 ) )
29 14 18 17 16 28 cmpo ( 𝑢 ∈ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) , 𝑧 ∈ ( Base ‘ 𝑓 ) ↦ tpos ( ⟨ 𝑧 , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝑓 ) ( 1st𝑢 ) ) )
30 13 29 cop ⟨ ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) , 𝑧 ∈ ( Base ‘ 𝑓 ) ↦ tpos ( ⟨ 𝑧 , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝑓 ) ( 1st𝑢 ) ) ) ⟩
31 11 30 4 co ( ( 𝑓 sSet ⟨ ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑓 ) ⟩ ) sSet ⟨ ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) , 𝑧 ∈ ( Base ‘ 𝑓 ) ↦ tpos ( ⟨ 𝑧 , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝑓 ) ( 1st𝑢 ) ) ) ⟩ )
32 1 2 31 cmpt ( 𝑓 ∈ V ↦ ( ( 𝑓 sSet ⟨ ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑓 ) ⟩ ) sSet ⟨ ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) , 𝑧 ∈ ( Base ‘ 𝑓 ) ↦ tpos ( ⟨ 𝑧 , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝑓 ) ( 1st𝑢 ) ) ) ⟩ ) )
33 0 32 wceq oppCat = ( 𝑓 ∈ V ↦ ( ( 𝑓 sSet ⟨ ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑓 ) ⟩ ) sSet ⟨ ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) , 𝑧 ∈ ( Base ‘ 𝑓 ) ↦ tpos ( ⟨ 𝑧 , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝑓 ) ( 1st𝑢 ) ) ) ⟩ ) )