Description: Define an opposite ring, which is the same as the original ring but with multiplication written the other way around. (Contributed by Mario Carneiro, 1-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-oppr | ⊢ oppr = ( 𝑓 ∈ V ↦ ( 𝑓 sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑓 ) 〉 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | coppr | ⊢ oppr | |
1 | vf | ⊢ 𝑓 | |
2 | cvv | ⊢ V | |
3 | 1 | cv | ⊢ 𝑓 |
4 | csts | ⊢ sSet | |
5 | cmulr | ⊢ .r | |
6 | cnx | ⊢ ndx | |
7 | 6 5 | cfv | ⊢ ( .r ‘ ndx ) |
8 | 3 5 | cfv | ⊢ ( .r ‘ 𝑓 ) |
9 | 8 | ctpos | ⊢ tpos ( .r ‘ 𝑓 ) |
10 | 7 9 | cop | ⊢ 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑓 ) 〉 |
11 | 3 10 4 | co | ⊢ ( 𝑓 sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑓 ) 〉 ) |
12 | 1 2 11 | cmpt | ⊢ ( 𝑓 ∈ V ↦ ( 𝑓 sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑓 ) 〉 ) ) |
13 | 0 12 | wceq | ⊢ oppr = ( 𝑓 ∈ V ↦ ( 𝑓 sSet 〈 ( .r ‘ ndx ) , tpos ( .r ‘ 𝑓 ) 〉 ) ) |