Metamath Proof Explorer


Definition df-opsr

Description: Define a total order on the set of all power series in s from the index set i given a wellordering r of i and a totally ordered base ring s . (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Assertion df-opsr ordPwSer = ( 𝑖 ∈ V , 𝑠 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑖 × 𝑖 ) ↦ ( 𝑖 mPwSer 𝑠 ) / 𝑝 ( 𝑝 sSet ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } / 𝑑 ]𝑧𝑑 ( ( 𝑥𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦𝑧 ) ∧ ∀ 𝑤𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ⟩ ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 copws ordPwSer
1 vi 𝑖
2 cvv V
3 vs 𝑠
4 vr 𝑟
5 1 cv 𝑖
6 5 5 cxp ( 𝑖 × 𝑖 )
7 6 cpw 𝒫 ( 𝑖 × 𝑖 )
8 cmps mPwSer
9 3 cv 𝑠
10 5 9 8 co ( 𝑖 mPwSer 𝑠 )
11 vp 𝑝
12 11 cv 𝑝
13 csts sSet
14 cple le
15 cnx ndx
16 15 14 cfv ( le ‘ ndx )
17 vx 𝑥
18 vy 𝑦
19 17 cv 𝑥
20 18 cv 𝑦
21 19 20 cpr { 𝑥 , 𝑦 }
22 cbs Base
23 12 22 cfv ( Base ‘ 𝑝 )
24 21 23 wss { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 )
25 vh
26 cn0 0
27 cmap m
28 26 5 27 co ( ℕ0m 𝑖 )
29 25 cv
30 29 ccnv
31 cn
32 30 31 cima ( “ ℕ )
33 cfn Fin
34 32 33 wcel ( “ ℕ ) ∈ Fin
35 34 25 28 crab { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin }
36 vd 𝑑
37 vz 𝑧
38 36 cv 𝑑
39 37 cv 𝑧
40 39 19 cfv ( 𝑥𝑧 )
41 cplt lt
42 9 41 cfv ( lt ‘ 𝑠 )
43 39 20 cfv ( 𝑦𝑧 )
44 40 43 42 wbr ( 𝑥𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦𝑧 )
45 vw 𝑤
46 45 cv 𝑤
47 4 cv 𝑟
48 cltb <bag
49 47 5 48 co ( 𝑟 <bag 𝑖 )
50 46 39 49 wbr 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧
51 46 19 cfv ( 𝑥𝑤 )
52 46 20 cfv ( 𝑦𝑤 )
53 51 52 wceq ( 𝑥𝑤 ) = ( 𝑦𝑤 )
54 50 53 wi ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) )
55 54 45 38 wral 𝑤𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) )
56 44 55 wa ( ( 𝑥𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦𝑧 ) ∧ ∀ 𝑤𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) )
57 56 37 38 wrex 𝑧𝑑 ( ( 𝑥𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦𝑧 ) ∧ ∀ 𝑤𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) )
58 57 36 35 wsbc [ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } / 𝑑 ]𝑧𝑑 ( ( 𝑥𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦𝑧 ) ∧ ∀ 𝑤𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) )
59 19 20 wceq 𝑥 = 𝑦
60 58 59 wo ( [ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } / 𝑑 ]𝑧𝑑 ( ( 𝑥𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦𝑧 ) ∧ ∀ 𝑤𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ∨ 𝑥 = 𝑦 )
61 24 60 wa ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } / 𝑑 ]𝑧𝑑 ( ( 𝑥𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦𝑧 ) ∧ ∀ 𝑤𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) )
62 61 17 18 copab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } / 𝑑 ]𝑧𝑑 ( ( 𝑥𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦𝑧 ) ∧ ∀ 𝑤𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) }
63 16 62 cop ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } / 𝑑 ]𝑧𝑑 ( ( 𝑥𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦𝑧 ) ∧ ∀ 𝑤𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ⟩
64 12 63 13 co ( 𝑝 sSet ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } / 𝑑 ]𝑧𝑑 ( ( 𝑥𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦𝑧 ) ∧ ∀ 𝑤𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ⟩ )
65 11 10 64 csb ( 𝑖 mPwSer 𝑠 ) / 𝑝 ( 𝑝 sSet ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } / 𝑑 ]𝑧𝑑 ( ( 𝑥𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦𝑧 ) ∧ ∀ 𝑤𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ⟩ )
66 4 7 65 cmpt ( 𝑟 ∈ 𝒫 ( 𝑖 × 𝑖 ) ↦ ( 𝑖 mPwSer 𝑠 ) / 𝑝 ( 𝑝 sSet ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } / 𝑑 ]𝑧𝑑 ( ( 𝑥𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦𝑧 ) ∧ ∀ 𝑤𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ⟩ ) )
67 1 3 2 2 66 cmpo ( 𝑖 ∈ V , 𝑠 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑖 × 𝑖 ) ↦ ( 𝑖 mPwSer 𝑠 ) / 𝑝 ( 𝑝 sSet ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } / 𝑑 ]𝑧𝑑 ( ( 𝑥𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦𝑧 ) ∧ ∀ 𝑤𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ⟩ ) ) )
68 0 67 wceq ordPwSer = ( 𝑖 ∈ V , 𝑠 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑖 × 𝑖 ) ↦ ( 𝑖 mPwSer 𝑠 ) / 𝑝 ( 𝑝 sSet ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } / 𝑑 ]𝑧𝑑 ( ( 𝑥𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦𝑧 ) ∧ ∀ 𝑤𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ⟩ ) ) )