Step |
Hyp |
Ref |
Expression |
0 |
|
copws |
⊢ ordPwSer |
1 |
|
vi |
⊢ 𝑖 |
2 |
|
cvv |
⊢ V |
3 |
|
vs |
⊢ 𝑠 |
4 |
|
vr |
⊢ 𝑟 |
5 |
1
|
cv |
⊢ 𝑖 |
6 |
5 5
|
cxp |
⊢ ( 𝑖 × 𝑖 ) |
7 |
6
|
cpw |
⊢ 𝒫 ( 𝑖 × 𝑖 ) |
8 |
|
cmps |
⊢ mPwSer |
9 |
3
|
cv |
⊢ 𝑠 |
10 |
5 9 8
|
co |
⊢ ( 𝑖 mPwSer 𝑠 ) |
11 |
|
vp |
⊢ 𝑝 |
12 |
11
|
cv |
⊢ 𝑝 |
13 |
|
csts |
⊢ sSet |
14 |
|
cple |
⊢ le |
15 |
|
cnx |
⊢ ndx |
16 |
15 14
|
cfv |
⊢ ( le ‘ ndx ) |
17 |
|
vx |
⊢ 𝑥 |
18 |
|
vy |
⊢ 𝑦 |
19 |
17
|
cv |
⊢ 𝑥 |
20 |
18
|
cv |
⊢ 𝑦 |
21 |
19 20
|
cpr |
⊢ { 𝑥 , 𝑦 } |
22 |
|
cbs |
⊢ Base |
23 |
12 22
|
cfv |
⊢ ( Base ‘ 𝑝 ) |
24 |
21 23
|
wss |
⊢ { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) |
25 |
|
vh |
⊢ ℎ |
26 |
|
cn0 |
⊢ ℕ0 |
27 |
|
cmap |
⊢ ↑m |
28 |
26 5 27
|
co |
⊢ ( ℕ0 ↑m 𝑖 ) |
29 |
25
|
cv |
⊢ ℎ |
30 |
29
|
ccnv |
⊢ ◡ ℎ |
31 |
|
cn |
⊢ ℕ |
32 |
30 31
|
cima |
⊢ ( ◡ ℎ “ ℕ ) |
33 |
|
cfn |
⊢ Fin |
34 |
32 33
|
wcel |
⊢ ( ◡ ℎ “ ℕ ) ∈ Fin |
35 |
34 25 28
|
crab |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
36 |
|
vd |
⊢ 𝑑 |
37 |
|
vz |
⊢ 𝑧 |
38 |
36
|
cv |
⊢ 𝑑 |
39 |
37
|
cv |
⊢ 𝑧 |
40 |
39 19
|
cfv |
⊢ ( 𝑥 ‘ 𝑧 ) |
41 |
|
cplt |
⊢ lt |
42 |
9 41
|
cfv |
⊢ ( lt ‘ 𝑠 ) |
43 |
39 20
|
cfv |
⊢ ( 𝑦 ‘ 𝑧 ) |
44 |
40 43 42
|
wbr |
⊢ ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) |
45 |
|
vw |
⊢ 𝑤 |
46 |
45
|
cv |
⊢ 𝑤 |
47 |
4
|
cv |
⊢ 𝑟 |
48 |
|
cltb |
⊢ <bag |
49 |
47 5 48
|
co |
⊢ ( 𝑟 <bag 𝑖 ) |
50 |
46 39 49
|
wbr |
⊢ 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 |
51 |
46 19
|
cfv |
⊢ ( 𝑥 ‘ 𝑤 ) |
52 |
46 20
|
cfv |
⊢ ( 𝑦 ‘ 𝑤 ) |
53 |
51 52
|
wceq |
⊢ ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) |
54 |
50 53
|
wi |
⊢ ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) |
55 |
54 45 38
|
wral |
⊢ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) |
56 |
44 55
|
wa |
⊢ ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) |
57 |
56 37 38
|
wrex |
⊢ ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) |
58 |
57 36 35
|
wsbc |
⊢ [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) |
59 |
19 20
|
wceq |
⊢ 𝑥 = 𝑦 |
60 |
58 59
|
wo |
⊢ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) |
61 |
24 60
|
wa |
⊢ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) |
62 |
61 17 18
|
copab |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } |
63 |
16 62
|
cop |
⊢ 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 |
64 |
12 63 13
|
co |
⊢ ( 𝑝 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) |
65 |
11 10 64
|
csb |
⊢ ⦋ ( 𝑖 mPwSer 𝑠 ) / 𝑝 ⦌ ( 𝑝 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) |
66 |
4 7 65
|
cmpt |
⊢ ( 𝑟 ∈ 𝒫 ( 𝑖 × 𝑖 ) ↦ ⦋ ( 𝑖 mPwSer 𝑠 ) / 𝑝 ⦌ ( 𝑝 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) |
67 |
1 3 2 2 66
|
cmpo |
⊢ ( 𝑖 ∈ V , 𝑠 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑖 × 𝑖 ) ↦ ⦋ ( 𝑖 mPwSer 𝑠 ) / 𝑝 ⦌ ( 𝑝 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ) |
68 |
0 67
|
wceq |
⊢ ordPwSer = ( 𝑖 ∈ V , 𝑠 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑖 × 𝑖 ) ↦ ⦋ ( 𝑖 mPwSer 𝑠 ) / 𝑝 ⦌ ( 𝑝 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ) |