Step |
Hyp |
Ref |
Expression |
0 |
|
cordt |
⊢ ordTop |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
cvv |
⊢ V |
3 |
|
ctg |
⊢ topGen |
4 |
|
cfi |
⊢ fi |
5 |
1
|
cv |
⊢ 𝑟 |
6 |
5
|
cdm |
⊢ dom 𝑟 |
7 |
6
|
csn |
⊢ { dom 𝑟 } |
8 |
|
vx |
⊢ 𝑥 |
9 |
|
vy |
⊢ 𝑦 |
10 |
9
|
cv |
⊢ 𝑦 |
11 |
8
|
cv |
⊢ 𝑥 |
12 |
10 11 5
|
wbr |
⊢ 𝑦 𝑟 𝑥 |
13 |
12
|
wn |
⊢ ¬ 𝑦 𝑟 𝑥 |
14 |
13 9 6
|
crab |
⊢ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } |
15 |
8 6 14
|
cmpt |
⊢ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) |
16 |
11 10 5
|
wbr |
⊢ 𝑥 𝑟 𝑦 |
17 |
16
|
wn |
⊢ ¬ 𝑥 𝑟 𝑦 |
18 |
17 9 6
|
crab |
⊢ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } |
19 |
8 6 18
|
cmpt |
⊢ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) |
20 |
15 19
|
cun |
⊢ ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) |
21 |
20
|
crn |
⊢ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) |
22 |
7 21
|
cun |
⊢ ( { dom 𝑟 } ∪ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) ) |
23 |
22 4
|
cfv |
⊢ ( fi ‘ ( { dom 𝑟 } ∪ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) ) ) |
24 |
23 3
|
cfv |
⊢ ( topGen ‘ ( fi ‘ ( { dom 𝑟 } ∪ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) ) ) ) |
25 |
1 2 24
|
cmpt |
⊢ ( 𝑟 ∈ V ↦ ( topGen ‘ ( fi ‘ ( { dom 𝑟 } ∪ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) ) ) ) ) |
26 |
0 25
|
wceq |
⊢ ordTop = ( 𝑟 ∈ V ↦ ( topGen ‘ ( fi ‘ ( { dom 𝑟 } ∪ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) ) ) ) ) |