Metamath Proof Explorer


Definition df-ot

Description: Define ordered triple of classes. Definition of ordered triple in Stoll p. 25. (Contributed by NM, 3-Apr-2015)

Ref Expression
Assertion df-ot 𝐴 , 𝐵 , 𝐶 ⟩ = ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 cB 𝐵
2 cC 𝐶
3 0 1 2 cotp 𝐴 , 𝐵 , 𝐶
4 0 1 cop 𝐴 , 𝐵
5 4 2 cop ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶
6 3 5 wceq 𝐴 , 𝐵 , 𝐶 ⟩ = ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶