Step |
Hyp |
Ref |
Expression |
0 |
|
covol |
⊢ vol* |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cr |
⊢ ℝ |
3 |
2
|
cpw |
⊢ 𝒫 ℝ |
4 |
|
vy |
⊢ 𝑦 |
5 |
|
cxr |
⊢ ℝ* |
6 |
|
vf |
⊢ 𝑓 |
7 |
|
cle |
⊢ ≤ |
8 |
2 2
|
cxp |
⊢ ( ℝ × ℝ ) |
9 |
7 8
|
cin |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) |
10 |
|
cmap |
⊢ ↑m |
11 |
|
cn |
⊢ ℕ |
12 |
9 11 10
|
co |
⊢ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) |
13 |
1
|
cv |
⊢ 𝑥 |
14 |
|
cioo |
⊢ (,) |
15 |
6
|
cv |
⊢ 𝑓 |
16 |
14 15
|
ccom |
⊢ ( (,) ∘ 𝑓 ) |
17 |
16
|
crn |
⊢ ran ( (,) ∘ 𝑓 ) |
18 |
17
|
cuni |
⊢ ∪ ran ( (,) ∘ 𝑓 ) |
19 |
13 18
|
wss |
⊢ 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) |
20 |
4
|
cv |
⊢ 𝑦 |
21 |
|
c1 |
⊢ 1 |
22 |
|
caddc |
⊢ + |
23 |
|
cabs |
⊢ abs |
24 |
|
cmin |
⊢ − |
25 |
23 24
|
ccom |
⊢ ( abs ∘ − ) |
26 |
25 15
|
ccom |
⊢ ( ( abs ∘ − ) ∘ 𝑓 ) |
27 |
22 26 21
|
cseq |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) |
28 |
27
|
crn |
⊢ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) |
29 |
|
clt |
⊢ < |
30 |
28 5 29
|
csup |
⊢ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) |
31 |
20 30
|
wceq |
⊢ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) |
32 |
19 31
|
wa |
⊢ ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
33 |
32 6 12
|
wrex |
⊢ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
34 |
33 4 5
|
crab |
⊢ { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } |
35 |
34 5 29
|
cinf |
⊢ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) |
36 |
1 3 35
|
cmpt |
⊢ ( 𝑥 ∈ 𝒫 ℝ ↦ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) |
37 |
0 36
|
wceq |
⊢ vol* = ( 𝑥 ∈ 𝒫 ℝ ↦ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) |