Metamath Proof Explorer


Definition df-ovol

Description: Define the outer Lebesgue measure for subsets of the reals. Here f is a function from the positive integers to pairs <. a , b >. with a <_ b , and the outer volume of the set x is the infimum over all such functions such that the union of the open intervals ( a , b ) covers x of the sum of b - a . (Contributed by Mario Carneiro, 16-Mar-2014) (Revised by AV, 17-Sep-2020)

Ref Expression
Assertion df-ovol vol* = ( 𝑥 ∈ 𝒫 ℝ ↦ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 covol vol*
1 vx 𝑥
2 cr
3 2 cpw 𝒫 ℝ
4 vy 𝑦
5 cxr *
6 vf 𝑓
7 cle
8 2 2 cxp ( ℝ × ℝ )
9 7 8 cin ( ≤ ∩ ( ℝ × ℝ ) )
10 cmap m
11 cn
12 9 11 10 co ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ )
13 1 cv 𝑥
14 cioo (,)
15 6 cv 𝑓
16 14 15 ccom ( (,) ∘ 𝑓 )
17 16 crn ran ( (,) ∘ 𝑓 )
18 17 cuni ran ( (,) ∘ 𝑓 )
19 13 18 wss 𝑥 ran ( (,) ∘ 𝑓 )
20 4 cv 𝑦
21 c1 1
22 caddc +
23 cabs abs
24 cmin
25 23 24 ccom ( abs ∘ − )
26 25 15 ccom ( ( abs ∘ − ) ∘ 𝑓 )
27 22 26 21 cseq seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) )
28 27 crn ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) )
29 clt <
30 28 5 29 csup sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < )
31 20 30 wceq 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < )
32 19 31 wa ( 𝑥 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) )
33 32 6 12 wrex 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) )
34 33 4 5 crab { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) }
35 34 5 29 cinf inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < )
36 1 3 35 cmpt ( 𝑥 ∈ 𝒫 ℝ ↦ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) )
37 0 36 wceq vol* = ( 𝑥 ∈ 𝒫 ℝ ↦ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) )