Metamath Proof Explorer


Definition df-p0

Description: Define poset zero. (Contributed by NM, 12-Oct-2011)

Ref Expression
Assertion df-p0 0. = ( 𝑝 ∈ V ↦ ( ( glb ‘ 𝑝 ) ‘ ( Base ‘ 𝑝 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cp0 0.
1 vp 𝑝
2 cvv V
3 cglb glb
4 1 cv 𝑝
5 4 3 cfv ( glb ‘ 𝑝 )
6 cbs Base
7 4 6 cfv ( Base ‘ 𝑝 )
8 7 5 cfv ( ( glb ‘ 𝑝 ) ‘ ( Base ‘ 𝑝 ) )
9 1 2 8 cmpt ( 𝑝 ∈ V ↦ ( ( glb ‘ 𝑝 ) ‘ ( Base ‘ 𝑝 ) ) )
10 0 9 wceq 0. = ( 𝑝 ∈ V ↦ ( ( glb ‘ 𝑝 ) ‘ ( Base ‘ 𝑝 ) ) )