Metamath Proof Explorer


Definition df-padd

Description: Define projective sum of two subspaces (or more generally two sets of atoms), which is the union of all lines generated by pairs of atoms from each subspace. Lemma 16.2 of MaedaMaeda p. 68. For convenience, our definition is generalized to apply to empty sets. (Contributed by NM, 29-Dec-2011)

Ref Expression
Assertion df-padd +𝑃 = ( 𝑙 ∈ V ↦ ( 𝑚 ∈ 𝒫 ( Atoms ‘ 𝑙 ) , 𝑛 ∈ 𝒫 ( Atoms ‘ 𝑙 ) ↦ ( ( 𝑚𝑛 ) ∪ { 𝑝 ∈ ( Atoms ‘ 𝑙 ) ∣ ∃ 𝑞𝑚𝑟𝑛 𝑝 ( le ‘ 𝑙 ) ( 𝑞 ( join ‘ 𝑙 ) 𝑟 ) } ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpadd +𝑃
1 vl 𝑙
2 cvv V
3 vm 𝑚
4 catm Atoms
5 1 cv 𝑙
6 5 4 cfv ( Atoms ‘ 𝑙 )
7 6 cpw 𝒫 ( Atoms ‘ 𝑙 )
8 vn 𝑛
9 3 cv 𝑚
10 8 cv 𝑛
11 9 10 cun ( 𝑚𝑛 )
12 vp 𝑝
13 vq 𝑞
14 vr 𝑟
15 12 cv 𝑝
16 cple le
17 5 16 cfv ( le ‘ 𝑙 )
18 13 cv 𝑞
19 cjn join
20 5 19 cfv ( join ‘ 𝑙 )
21 14 cv 𝑟
22 18 21 20 co ( 𝑞 ( join ‘ 𝑙 ) 𝑟 )
23 15 22 17 wbr 𝑝 ( le ‘ 𝑙 ) ( 𝑞 ( join ‘ 𝑙 ) 𝑟 )
24 23 14 10 wrex 𝑟𝑛 𝑝 ( le ‘ 𝑙 ) ( 𝑞 ( join ‘ 𝑙 ) 𝑟 )
25 24 13 9 wrex 𝑞𝑚𝑟𝑛 𝑝 ( le ‘ 𝑙 ) ( 𝑞 ( join ‘ 𝑙 ) 𝑟 )
26 25 12 6 crab { 𝑝 ∈ ( Atoms ‘ 𝑙 ) ∣ ∃ 𝑞𝑚𝑟𝑛 𝑝 ( le ‘ 𝑙 ) ( 𝑞 ( join ‘ 𝑙 ) 𝑟 ) }
27 11 26 cun ( ( 𝑚𝑛 ) ∪ { 𝑝 ∈ ( Atoms ‘ 𝑙 ) ∣ ∃ 𝑞𝑚𝑟𝑛 𝑝 ( le ‘ 𝑙 ) ( 𝑞 ( join ‘ 𝑙 ) 𝑟 ) } )
28 3 8 7 7 27 cmpo ( 𝑚 ∈ 𝒫 ( Atoms ‘ 𝑙 ) , 𝑛 ∈ 𝒫 ( Atoms ‘ 𝑙 ) ↦ ( ( 𝑚𝑛 ) ∪ { 𝑝 ∈ ( Atoms ‘ 𝑙 ) ∣ ∃ 𝑞𝑚𝑟𝑛 𝑝 ( le ‘ 𝑙 ) ( 𝑞 ( join ‘ 𝑙 ) 𝑟 ) } ) )
29 1 2 28 cmpt ( 𝑙 ∈ V ↦ ( 𝑚 ∈ 𝒫 ( Atoms ‘ 𝑙 ) , 𝑛 ∈ 𝒫 ( Atoms ‘ 𝑙 ) ↦ ( ( 𝑚𝑛 ) ∪ { 𝑝 ∈ ( Atoms ‘ 𝑙 ) ∣ ∃ 𝑞𝑚𝑟𝑛 𝑝 ( le ‘ 𝑙 ) ( 𝑞 ( join ‘ 𝑙 ) 𝑟 ) } ) ) )
30 0 29 wceq +𝑃 = ( 𝑙 ∈ V ↦ ( 𝑚 ∈ 𝒫 ( Atoms ‘ 𝑙 ) , 𝑛 ∈ 𝒫 ( Atoms ‘ 𝑙 ) ↦ ( ( 𝑚𝑛 ) ∪ { 𝑝 ∈ ( Atoms ‘ 𝑙 ) ∣ ∃ 𝑞𝑚𝑟𝑛 𝑝 ( le ‘ 𝑙 ) ( 𝑞 ( join ‘ 𝑙 ) 𝑟 ) } ) ) )