Step |
Hyp |
Ref |
Expression |
0 |
|
cpadd |
⊢ +𝑃 |
1 |
|
vl |
⊢ 𝑙 |
2 |
|
cvv |
⊢ V |
3 |
|
vm |
⊢ 𝑚 |
4 |
|
catm |
⊢ Atoms |
5 |
1
|
cv |
⊢ 𝑙 |
6 |
5 4
|
cfv |
⊢ ( Atoms ‘ 𝑙 ) |
7 |
6
|
cpw |
⊢ 𝒫 ( Atoms ‘ 𝑙 ) |
8 |
|
vn |
⊢ 𝑛 |
9 |
3
|
cv |
⊢ 𝑚 |
10 |
8
|
cv |
⊢ 𝑛 |
11 |
9 10
|
cun |
⊢ ( 𝑚 ∪ 𝑛 ) |
12 |
|
vp |
⊢ 𝑝 |
13 |
|
vq |
⊢ 𝑞 |
14 |
|
vr |
⊢ 𝑟 |
15 |
12
|
cv |
⊢ 𝑝 |
16 |
|
cple |
⊢ le |
17 |
5 16
|
cfv |
⊢ ( le ‘ 𝑙 ) |
18 |
13
|
cv |
⊢ 𝑞 |
19 |
|
cjn |
⊢ join |
20 |
5 19
|
cfv |
⊢ ( join ‘ 𝑙 ) |
21 |
14
|
cv |
⊢ 𝑟 |
22 |
18 21 20
|
co |
⊢ ( 𝑞 ( join ‘ 𝑙 ) 𝑟 ) |
23 |
15 22 17
|
wbr |
⊢ 𝑝 ( le ‘ 𝑙 ) ( 𝑞 ( join ‘ 𝑙 ) 𝑟 ) |
24 |
23 14 10
|
wrex |
⊢ ∃ 𝑟 ∈ 𝑛 𝑝 ( le ‘ 𝑙 ) ( 𝑞 ( join ‘ 𝑙 ) 𝑟 ) |
25 |
24 13 9
|
wrex |
⊢ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ( le ‘ 𝑙 ) ( 𝑞 ( join ‘ 𝑙 ) 𝑟 ) |
26 |
25 12 6
|
crab |
⊢ { 𝑝 ∈ ( Atoms ‘ 𝑙 ) ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ( le ‘ 𝑙 ) ( 𝑞 ( join ‘ 𝑙 ) 𝑟 ) } |
27 |
11 26
|
cun |
⊢ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ ( Atoms ‘ 𝑙 ) ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ( le ‘ 𝑙 ) ( 𝑞 ( join ‘ 𝑙 ) 𝑟 ) } ) |
28 |
3 8 7 7 27
|
cmpo |
⊢ ( 𝑚 ∈ 𝒫 ( Atoms ‘ 𝑙 ) , 𝑛 ∈ 𝒫 ( Atoms ‘ 𝑙 ) ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ ( Atoms ‘ 𝑙 ) ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ( le ‘ 𝑙 ) ( 𝑞 ( join ‘ 𝑙 ) 𝑟 ) } ) ) |
29 |
1 2 28
|
cmpt |
⊢ ( 𝑙 ∈ V ↦ ( 𝑚 ∈ 𝒫 ( Atoms ‘ 𝑙 ) , 𝑛 ∈ 𝒫 ( Atoms ‘ 𝑙 ) ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ ( Atoms ‘ 𝑙 ) ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ( le ‘ 𝑙 ) ( 𝑞 ( join ‘ 𝑙 ) 𝑟 ) } ) ) ) |
30 |
0 29
|
wceq |
⊢ +𝑃 = ( 𝑙 ∈ V ↦ ( 𝑚 ∈ 𝒫 ( Atoms ‘ 𝑙 ) , 𝑛 ∈ 𝒫 ( Atoms ‘ 𝑙 ) ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ ( Atoms ‘ 𝑙 ) ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ( le ‘ 𝑙 ) ( 𝑞 ( join ‘ 𝑙 ) 𝑟 ) } ) ) ) |