Step |
Hyp |
Ref |
Expression |
0 |
|
cpc |
⊢ pCnt |
1 |
|
vp |
⊢ 𝑝 |
2 |
|
cprime |
⊢ ℙ |
3 |
|
vr |
⊢ 𝑟 |
4 |
|
cq |
⊢ ℚ |
5 |
3
|
cv |
⊢ 𝑟 |
6 |
|
cc0 |
⊢ 0 |
7 |
5 6
|
wceq |
⊢ 𝑟 = 0 |
8 |
|
cpnf |
⊢ +∞ |
9 |
|
vz |
⊢ 𝑧 |
10 |
|
vx |
⊢ 𝑥 |
11 |
|
cz |
⊢ ℤ |
12 |
|
vy |
⊢ 𝑦 |
13 |
|
cn |
⊢ ℕ |
14 |
10
|
cv |
⊢ 𝑥 |
15 |
|
cdiv |
⊢ / |
16 |
12
|
cv |
⊢ 𝑦 |
17 |
14 16 15
|
co |
⊢ ( 𝑥 / 𝑦 ) |
18 |
5 17
|
wceq |
⊢ 𝑟 = ( 𝑥 / 𝑦 ) |
19 |
9
|
cv |
⊢ 𝑧 |
20 |
|
vn |
⊢ 𝑛 |
21 |
|
cn0 |
⊢ ℕ0 |
22 |
1
|
cv |
⊢ 𝑝 |
23 |
|
cexp |
⊢ ↑ |
24 |
20
|
cv |
⊢ 𝑛 |
25 |
22 24 23
|
co |
⊢ ( 𝑝 ↑ 𝑛 ) |
26 |
|
cdvds |
⊢ ∥ |
27 |
25 14 26
|
wbr |
⊢ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 |
28 |
27 20 21
|
crab |
⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } |
29 |
|
cr |
⊢ ℝ |
30 |
|
clt |
⊢ < |
31 |
28 29 30
|
csup |
⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) |
32 |
|
cmin |
⊢ − |
33 |
25 16 26
|
wbr |
⊢ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 |
34 |
33 20 21
|
crab |
⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } |
35 |
34 29 30
|
csup |
⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) |
36 |
31 35 32
|
co |
⊢ ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) |
37 |
19 36
|
wceq |
⊢ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) |
38 |
18 37
|
wa |
⊢ ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) |
39 |
38 12 13
|
wrex |
⊢ ∃ 𝑦 ∈ ℕ ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) |
40 |
39 10 11
|
wrex |
⊢ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) |
41 |
40 9
|
cio |
⊢ ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
42 |
7 8 41
|
cif |
⊢ if ( 𝑟 = 0 , +∞ , ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) |
43 |
1 3 2 4 42
|
cmpo |
⊢ ( 𝑝 ∈ ℙ , 𝑟 ∈ ℚ ↦ if ( 𝑟 = 0 , +∞ , ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) ) |
44 |
0 43
|
wceq |
⊢ pCnt = ( 𝑝 ∈ ℙ , 𝑟 ∈ ℚ ↦ if ( 𝑟 = 0 , +∞ , ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) ) |