Step |
Hyp |
Ref |
Expression |
0 |
|
cpellfund |
⊢ PellFund |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cn |
⊢ ℕ |
3 |
|
csquarenn |
⊢ ◻NN |
4 |
2 3
|
cdif |
⊢ ( ℕ ∖ ◻NN ) |
5 |
|
vz |
⊢ 𝑧 |
6 |
|
cpell14qr |
⊢ Pell14QR |
7 |
1
|
cv |
⊢ 𝑥 |
8 |
7 6
|
cfv |
⊢ ( Pell14QR ‘ 𝑥 ) |
9 |
|
c1 |
⊢ 1 |
10 |
|
clt |
⊢ < |
11 |
5
|
cv |
⊢ 𝑧 |
12 |
9 11 10
|
wbr |
⊢ 1 < 𝑧 |
13 |
12 5 8
|
crab |
⊢ { 𝑧 ∈ ( Pell14QR ‘ 𝑥 ) ∣ 1 < 𝑧 } |
14 |
|
cr |
⊢ ℝ |
15 |
13 14 10
|
cinf |
⊢ inf ( { 𝑧 ∈ ( Pell14QR ‘ 𝑥 ) ∣ 1 < 𝑧 } , ℝ , < ) |
16 |
1 4 15
|
cmpt |
⊢ ( 𝑥 ∈ ( ℕ ∖ ◻NN ) ↦ inf ( { 𝑧 ∈ ( Pell14QR ‘ 𝑥 ) ∣ 1 < 𝑧 } , ℝ , < ) ) |
17 |
0 16
|
wceq |
⊢ PellFund = ( 𝑥 ∈ ( ℕ ∖ ◻NN ) ↦ inf ( { 𝑧 ∈ ( Pell14QR ‘ 𝑥 ) ∣ 1 < 𝑧 } , ℝ , < ) ) |