Metamath Proof Explorer


Definition df-perpg

Description: Define the "perpendicular" relation. Definition 8.11 of Schwabhauser p. 59. See isperp . (Contributed by Thierry Arnoux, 8-Sep-2019)

Ref Expression
Assertion df-perpg ⟂G = ( 𝑔 ∈ V ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ran ( LineG ‘ 𝑔 ) ∧ 𝑏 ∈ ran ( LineG ‘ 𝑔 ) ) ∧ ∃ 𝑥 ∈ ( 𝑎𝑏 ) ∀ 𝑢𝑎𝑣𝑏 ⟨“ 𝑢 𝑥 𝑣 ”⟩ ∈ ( ∟G ‘ 𝑔 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cperpg ⟂G
1 vg 𝑔
2 cvv V
3 va 𝑎
4 vb 𝑏
5 3 cv 𝑎
6 clng LineG
7 1 cv 𝑔
8 7 6 cfv ( LineG ‘ 𝑔 )
9 8 crn ran ( LineG ‘ 𝑔 )
10 5 9 wcel 𝑎 ∈ ran ( LineG ‘ 𝑔 )
11 4 cv 𝑏
12 11 9 wcel 𝑏 ∈ ran ( LineG ‘ 𝑔 )
13 10 12 wa ( 𝑎 ∈ ran ( LineG ‘ 𝑔 ) ∧ 𝑏 ∈ ran ( LineG ‘ 𝑔 ) )
14 vx 𝑥
15 5 11 cin ( 𝑎𝑏 )
16 vu 𝑢
17 vv 𝑣
18 16 cv 𝑢
19 14 cv 𝑥
20 17 cv 𝑣
21 18 19 20 cs3 ⟨“ 𝑢 𝑥 𝑣 ”⟩
22 crag ∟G
23 7 22 cfv ( ∟G ‘ 𝑔 )
24 21 23 wcel ⟨“ 𝑢 𝑥 𝑣 ”⟩ ∈ ( ∟G ‘ 𝑔 )
25 24 17 11 wral 𝑣𝑏 ⟨“ 𝑢 𝑥 𝑣 ”⟩ ∈ ( ∟G ‘ 𝑔 )
26 25 16 5 wral 𝑢𝑎𝑣𝑏 ⟨“ 𝑢 𝑥 𝑣 ”⟩ ∈ ( ∟G ‘ 𝑔 )
27 26 14 15 wrex 𝑥 ∈ ( 𝑎𝑏 ) ∀ 𝑢𝑎𝑣𝑏 ⟨“ 𝑢 𝑥 𝑣 ”⟩ ∈ ( ∟G ‘ 𝑔 )
28 13 27 wa ( ( 𝑎 ∈ ran ( LineG ‘ 𝑔 ) ∧ 𝑏 ∈ ran ( LineG ‘ 𝑔 ) ) ∧ ∃ 𝑥 ∈ ( 𝑎𝑏 ) ∀ 𝑢𝑎𝑣𝑏 ⟨“ 𝑢 𝑥 𝑣 ”⟩ ∈ ( ∟G ‘ 𝑔 ) )
29 28 3 4 copab { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ran ( LineG ‘ 𝑔 ) ∧ 𝑏 ∈ ran ( LineG ‘ 𝑔 ) ) ∧ ∃ 𝑥 ∈ ( 𝑎𝑏 ) ∀ 𝑢𝑎𝑣𝑏 ⟨“ 𝑢 𝑥 𝑣 ”⟩ ∈ ( ∟G ‘ 𝑔 ) ) }
30 1 2 29 cmpt ( 𝑔 ∈ V ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ran ( LineG ‘ 𝑔 ) ∧ 𝑏 ∈ ran ( LineG ‘ 𝑔 ) ) ∧ ∃ 𝑥 ∈ ( 𝑎𝑏 ) ∀ 𝑢𝑎𝑣𝑏 ⟨“ 𝑢 𝑥 𝑣 ”⟩ ∈ ( ∟G ‘ 𝑔 ) ) } )
31 0 30 wceq ⟂G = ( 𝑔 ∈ V ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ran ( LineG ‘ 𝑔 ) ∧ 𝑏 ∈ ran ( LineG ‘ 𝑔 ) ) ∧ ∃ 𝑥 ∈ ( 𝑎𝑏 ) ∀ 𝑢𝑎𝑣𝑏 ⟨“ 𝑢 𝑥 𝑣 ”⟩ ∈ ( ∟G ‘ 𝑔 ) ) } )