Step |
Hyp |
Ref |
Expression |
0 |
|
cperpg |
⊢ ⟂G |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cvv |
⊢ V |
3 |
|
va |
⊢ 𝑎 |
4 |
|
vb |
⊢ 𝑏 |
5 |
3
|
cv |
⊢ 𝑎 |
6 |
|
clng |
⊢ LineG |
7 |
1
|
cv |
⊢ 𝑔 |
8 |
7 6
|
cfv |
⊢ ( LineG ‘ 𝑔 ) |
9 |
8
|
crn |
⊢ ran ( LineG ‘ 𝑔 ) |
10 |
5 9
|
wcel |
⊢ 𝑎 ∈ ran ( LineG ‘ 𝑔 ) |
11 |
4
|
cv |
⊢ 𝑏 |
12 |
11 9
|
wcel |
⊢ 𝑏 ∈ ran ( LineG ‘ 𝑔 ) |
13 |
10 12
|
wa |
⊢ ( 𝑎 ∈ ran ( LineG ‘ 𝑔 ) ∧ 𝑏 ∈ ran ( LineG ‘ 𝑔 ) ) |
14 |
|
vx |
⊢ 𝑥 |
15 |
5 11
|
cin |
⊢ ( 𝑎 ∩ 𝑏 ) |
16 |
|
vu |
⊢ 𝑢 |
17 |
|
vv |
⊢ 𝑣 |
18 |
16
|
cv |
⊢ 𝑢 |
19 |
14
|
cv |
⊢ 𝑥 |
20 |
17
|
cv |
⊢ 𝑣 |
21 |
18 19 20
|
cs3 |
⊢ 〈“ 𝑢 𝑥 𝑣 ”〉 |
22 |
|
crag |
⊢ ∟G |
23 |
7 22
|
cfv |
⊢ ( ∟G ‘ 𝑔 ) |
24 |
21 23
|
wcel |
⊢ 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝑔 ) |
25 |
24 17 11
|
wral |
⊢ ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝑔 ) |
26 |
25 16 5
|
wral |
⊢ ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝑔 ) |
27 |
26 14 15
|
wrex |
⊢ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝑔 ) |
28 |
13 27
|
wa |
⊢ ( ( 𝑎 ∈ ran ( LineG ‘ 𝑔 ) ∧ 𝑏 ∈ ran ( LineG ‘ 𝑔 ) ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝑔 ) ) |
29 |
28 3 4
|
copab |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran ( LineG ‘ 𝑔 ) ∧ 𝑏 ∈ ran ( LineG ‘ 𝑔 ) ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝑔 ) ) } |
30 |
1 2 29
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran ( LineG ‘ 𝑔 ) ∧ 𝑏 ∈ ran ( LineG ‘ 𝑔 ) ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝑔 ) ) } ) |
31 |
0 30
|
wceq |
⊢ ⟂G = ( 𝑔 ∈ V ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ran ( LineG ‘ 𝑔 ) ∧ 𝑏 ∈ ran ( LineG ‘ 𝑔 ) ) ∧ ∃ 𝑥 ∈ ( 𝑎 ∩ 𝑏 ) ∀ 𝑢 ∈ 𝑎 ∀ 𝑣 ∈ 𝑏 〈“ 𝑢 𝑥 𝑣 ”〉 ∈ ( ∟G ‘ 𝑔 ) ) } ) |