| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpgp |
⊢ pGrp |
| 1 |
|
vp |
⊢ 𝑝 |
| 2 |
|
vg |
⊢ 𝑔 |
| 3 |
1
|
cv |
⊢ 𝑝 |
| 4 |
|
cprime |
⊢ ℙ |
| 5 |
3 4
|
wcel |
⊢ 𝑝 ∈ ℙ |
| 6 |
2
|
cv |
⊢ 𝑔 |
| 7 |
|
cgrp |
⊢ Grp |
| 8 |
6 7
|
wcel |
⊢ 𝑔 ∈ Grp |
| 9 |
5 8
|
wa |
⊢ ( 𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp ) |
| 10 |
|
vx |
⊢ 𝑥 |
| 11 |
|
cbs |
⊢ Base |
| 12 |
6 11
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
| 13 |
|
vn |
⊢ 𝑛 |
| 14 |
|
cn0 |
⊢ ℕ0 |
| 15 |
|
cod |
⊢ od |
| 16 |
6 15
|
cfv |
⊢ ( od ‘ 𝑔 ) |
| 17 |
10
|
cv |
⊢ 𝑥 |
| 18 |
17 16
|
cfv |
⊢ ( ( od ‘ 𝑔 ) ‘ 𝑥 ) |
| 19 |
|
cexp |
⊢ ↑ |
| 20 |
13
|
cv |
⊢ 𝑛 |
| 21 |
3 20 19
|
co |
⊢ ( 𝑝 ↑ 𝑛 ) |
| 22 |
18 21
|
wceq |
⊢ ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) |
| 23 |
22 13 14
|
wrex |
⊢ ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) |
| 24 |
23 10 12
|
wral |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) |
| 25 |
9 24
|
wa |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) ) |
| 26 |
25 1 2
|
copab |
⊢ { 〈 𝑝 , 𝑔 〉 ∣ ( ( 𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) ) } |
| 27 |
0 26
|
wceq |
⊢ pGrp = { 〈 𝑝 , 𝑔 〉 ∣ ( ( 𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) ) } |