| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccphlo | ⊢ CPreHilOLD | 
						
							| 1 |  | cnv | ⊢ NrmCVec | 
						
							| 2 |  | vg | ⊢ 𝑔 | 
						
							| 3 |  | vs | ⊢ 𝑠 | 
						
							| 4 |  | vn | ⊢ 𝑛 | 
						
							| 5 |  | vx | ⊢ 𝑥 | 
						
							| 6 | 2 | cv | ⊢ 𝑔 | 
						
							| 7 | 6 | crn | ⊢ ran  𝑔 | 
						
							| 8 |  | vy | ⊢ 𝑦 | 
						
							| 9 | 4 | cv | ⊢ 𝑛 | 
						
							| 10 | 5 | cv | ⊢ 𝑥 | 
						
							| 11 | 8 | cv | ⊢ 𝑦 | 
						
							| 12 | 10 11 6 | co | ⊢ ( 𝑥 𝑔 𝑦 ) | 
						
							| 13 | 12 9 | cfv | ⊢ ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) | 
						
							| 14 |  | cexp | ⊢ ↑ | 
						
							| 15 |  | c2 | ⊢ 2 | 
						
							| 16 | 13 15 14 | co | ⊢ ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) | 
						
							| 17 |  | caddc | ⊢  + | 
						
							| 18 |  | c1 | ⊢ 1 | 
						
							| 19 | 18 | cneg | ⊢ - 1 | 
						
							| 20 | 3 | cv | ⊢ 𝑠 | 
						
							| 21 | 19 11 20 | co | ⊢ ( - 1 𝑠 𝑦 ) | 
						
							| 22 | 10 21 6 | co | ⊢ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) | 
						
							| 23 | 22 9 | cfv | ⊢ ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) | 
						
							| 24 | 23 15 14 | co | ⊢ ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) | 
						
							| 25 | 16 24 17 | co | ⊢ ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 )  +  ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) | 
						
							| 26 |  | cmul | ⊢  · | 
						
							| 27 | 10 9 | cfv | ⊢ ( 𝑛 ‘ 𝑥 ) | 
						
							| 28 | 27 15 14 | co | ⊢ ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) | 
						
							| 29 | 11 9 | cfv | ⊢ ( 𝑛 ‘ 𝑦 ) | 
						
							| 30 | 29 15 14 | co | ⊢ ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) | 
						
							| 31 | 28 30 17 | co | ⊢ ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) | 
						
							| 32 | 15 31 26 | co | ⊢ ( 2  ·  ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) | 
						
							| 33 | 25 32 | wceq | ⊢ ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 )  +  ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) | 
						
							| 34 | 33 8 7 | wral | ⊢ ∀ 𝑦  ∈  ran  𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 )  +  ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) | 
						
							| 35 | 34 5 7 | wral | ⊢ ∀ 𝑥  ∈  ran  𝑔 ∀ 𝑦  ∈  ran  𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 )  +  ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) | 
						
							| 36 | 35 2 3 4 | coprab | ⊢ { 〈 〈 𝑔 ,  𝑠 〉 ,  𝑛 〉  ∣  ∀ 𝑥  ∈  ran  𝑔 ∀ 𝑦  ∈  ran  𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 )  +  ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) } | 
						
							| 37 | 1 36 | cin | ⊢ ( NrmCVec  ∩  { 〈 〈 𝑔 ,  𝑠 〉 ,  𝑛 〉  ∣  ∀ 𝑥  ∈  ran  𝑔 ∀ 𝑦  ∈  ran  𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 )  +  ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) } ) | 
						
							| 38 | 0 37 | wceq | ⊢ CPreHilOLD  =  ( NrmCVec  ∩  { 〈 〈 𝑔 ,  𝑠 〉 ,  𝑛 〉  ∣  ∀ 𝑥  ∈  ran  𝑔 ∀ 𝑦  ∈  ran  𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 )  +  ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) )  =  ( 2  ·  ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 )  +  ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) } ) |