Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Euler's theorem
df-phi
Metamath Proof Explorer
Description: Define the Euler phi function (also called "Euler totient function"),
which counts the number of integers less than n and coprime to it,
see definition in ApostolNT p. 25. (Contributed by Mario Carneiro , 23-Feb-2014)
Ref
Expression
Assertion
df-phi
⊢ ϕ = ( 𝑛 ∈ ℕ ↦ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑛 ) ∣ ( 𝑥 gcd 𝑛 ) = 1 } ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cphi
⊢ ϕ
1
vn
⊢ 𝑛
2
cn
⊢ ℕ
3
chash
⊢ ♯
4
vx
⊢ 𝑥
5
c1
⊢ 1
6
cfz
⊢ ...
7
1
cv
⊢ 𝑛
8
5 7 6
co
⊢ ( 1 ... 𝑛 )
9
4
cv
⊢ 𝑥
10
cgcd
⊢ gcd
11
9 7 10
co
⊢ ( 𝑥 gcd 𝑛 )
12
11 5
wceq
⊢ ( 𝑥 gcd 𝑛 ) = 1
13
12 4 8
crab
⊢ { 𝑥 ∈ ( 1 ... 𝑛 ) ∣ ( 𝑥 gcd 𝑛 ) = 1 }
14
13 3
cfv
⊢ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑛 ) ∣ ( 𝑥 gcd 𝑛 ) = 1 } )
15
1 2 14
cmpt
⊢ ( 𝑛 ∈ ℕ ↦ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑛 ) ∣ ( 𝑥 gcd 𝑛 ) = 1 } ) )
16
0 15
wceq
⊢ ϕ = ( 𝑛 ∈ ℕ ↦ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑛 ) ∣ ( 𝑥 gcd 𝑛 ) = 1 } ) )