Metamath Proof Explorer


Definition df-phi

Description: Define the Euler phi function (also called "Euler totient function"), which counts the number of integers less than n and coprime to it, see definition in ApostolNT p. 25. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion df-phi ϕ = ( 𝑛 ∈ ℕ ↦ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑛 ) ∣ ( 𝑥 gcd 𝑛 ) = 1 } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cphi ϕ
1 vn 𝑛
2 cn
3 chash
4 vx 𝑥
5 c1 1
6 cfz ...
7 1 cv 𝑛
8 5 7 6 co ( 1 ... 𝑛 )
9 4 cv 𝑥
10 cgcd gcd
11 9 7 10 co ( 𝑥 gcd 𝑛 )
12 11 5 wceq ( 𝑥 gcd 𝑛 ) = 1
13 12 4 8 crab { 𝑥 ∈ ( 1 ... 𝑛 ) ∣ ( 𝑥 gcd 𝑛 ) = 1 }
14 13 3 cfv ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑛 ) ∣ ( 𝑥 gcd 𝑛 ) = 1 } )
15 1 2 14 cmpt ( 𝑛 ∈ ℕ ↦ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑛 ) ∣ ( 𝑥 gcd 𝑛 ) = 1 } ) )
16 0 15 wceq ϕ = ( 𝑛 ∈ ℕ ↦ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑛 ) ∣ ( 𝑥 gcd 𝑛 ) = 1 } ) )