Metamath Proof Explorer
Description: Aprincipal ideal domain is an integral domain satisfying the left
principal ideal property. (Contributed by Stefan O'Rear, 29-Mar-2015)
|
|
Ref |
Expression |
|
Assertion |
df-pid |
⊢ PID = ( IDomn ∩ LPIR ) |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
cpid |
⊢ PID |
1 |
|
cidom |
⊢ IDomn |
2 |
|
clpir |
⊢ LPIR |
3 |
1 2
|
cin |
⊢ ( IDomn ∩ LPIR ) |
4 |
0 3
|
wceq |
⊢ PID = ( IDomn ∩ LPIR ) |