Description: Aprincipal ideal domain is an integral domain satisfying the left principal ideal property. (Contributed by Stefan O'Rear, 29-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-pid | ⊢ PID = ( IDomn ∩ LPIR ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cpid | ⊢ PID | |
| 1 | cidom | ⊢ IDomn | |
| 2 | clpir | ⊢ LPIR | |
| 3 | 1 2 | cin | ⊢ ( IDomn ∩ LPIR ) | 
| 4 | 0 3 | wceq | ⊢ PID = ( IDomn ∩ LPIR ) |