| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cpj1 | ⊢ proj1 | 
						
							| 1 |  | vw | ⊢ 𝑤 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vt | ⊢ 𝑡 | 
						
							| 4 |  | cbs | ⊢ Base | 
						
							| 5 | 1 | cv | ⊢ 𝑤 | 
						
							| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑤 ) | 
						
							| 7 | 6 | cpw | ⊢ 𝒫  ( Base ‘ 𝑤 ) | 
						
							| 8 |  | vu | ⊢ 𝑢 | 
						
							| 9 |  | vz | ⊢ 𝑧 | 
						
							| 10 | 3 | cv | ⊢ 𝑡 | 
						
							| 11 |  | clsm | ⊢ LSSum | 
						
							| 12 | 5 11 | cfv | ⊢ ( LSSum ‘ 𝑤 ) | 
						
							| 13 | 8 | cv | ⊢ 𝑢 | 
						
							| 14 | 10 13 12 | co | ⊢ ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 ) | 
						
							| 15 |  | vx | ⊢ 𝑥 | 
						
							| 16 |  | vy | ⊢ 𝑦 | 
						
							| 17 | 9 | cv | ⊢ 𝑧 | 
						
							| 18 | 15 | cv | ⊢ 𝑥 | 
						
							| 19 |  | cplusg | ⊢ +g | 
						
							| 20 | 5 19 | cfv | ⊢ ( +g ‘ 𝑤 ) | 
						
							| 21 | 16 | cv | ⊢ 𝑦 | 
						
							| 22 | 18 21 20 | co | ⊢ ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) | 
						
							| 23 | 17 22 | wceq | ⊢ 𝑧  =  ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) | 
						
							| 24 | 23 16 13 | wrex | ⊢ ∃ 𝑦  ∈  𝑢 𝑧  =  ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) | 
						
							| 25 | 24 15 10 | crio | ⊢ ( ℩ 𝑥  ∈  𝑡 ∃ 𝑦  ∈  𝑢 𝑧  =  ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) | 
						
							| 26 | 9 14 25 | cmpt | ⊢ ( 𝑧  ∈  ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 )  ↦  ( ℩ 𝑥  ∈  𝑡 ∃ 𝑦  ∈  𝑢 𝑧  =  ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) ) | 
						
							| 27 | 3 8 7 7 26 | cmpo | ⊢ ( 𝑡  ∈  𝒫  ( Base ‘ 𝑤 ) ,  𝑢  ∈  𝒫  ( Base ‘ 𝑤 )  ↦  ( 𝑧  ∈  ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 )  ↦  ( ℩ 𝑥  ∈  𝑡 ∃ 𝑦  ∈  𝑢 𝑧  =  ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) ) ) | 
						
							| 28 | 1 2 27 | cmpt | ⊢ ( 𝑤  ∈  V  ↦  ( 𝑡  ∈  𝒫  ( Base ‘ 𝑤 ) ,  𝑢  ∈  𝒫  ( Base ‘ 𝑤 )  ↦  ( 𝑧  ∈  ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 )  ↦  ( ℩ 𝑥  ∈  𝑡 ∃ 𝑦  ∈  𝑢 𝑧  =  ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) ) ) ) | 
						
							| 29 | 0 28 | wceq | ⊢ proj1  =  ( 𝑤  ∈  V  ↦  ( 𝑡  ∈  𝒫  ( Base ‘ 𝑤 ) ,  𝑢  ∈  𝒫  ( Base ‘ 𝑤 )  ↦  ( 𝑧  ∈  ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 )  ↦  ( ℩ 𝑥  ∈  𝑡 ∃ 𝑦  ∈  𝑢 𝑧  =  ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) ) ) ) |