| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpj1 |
⊢ proj1 |
| 1 |
|
vw |
⊢ 𝑤 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vt |
⊢ 𝑡 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
1
|
cv |
⊢ 𝑤 |
| 6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
| 7 |
6
|
cpw |
⊢ 𝒫 ( Base ‘ 𝑤 ) |
| 8 |
|
vu |
⊢ 𝑢 |
| 9 |
|
vz |
⊢ 𝑧 |
| 10 |
3
|
cv |
⊢ 𝑡 |
| 11 |
|
clsm |
⊢ LSSum |
| 12 |
5 11
|
cfv |
⊢ ( LSSum ‘ 𝑤 ) |
| 13 |
8
|
cv |
⊢ 𝑢 |
| 14 |
10 13 12
|
co |
⊢ ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 ) |
| 15 |
|
vx |
⊢ 𝑥 |
| 16 |
|
vy |
⊢ 𝑦 |
| 17 |
9
|
cv |
⊢ 𝑧 |
| 18 |
15
|
cv |
⊢ 𝑥 |
| 19 |
|
cplusg |
⊢ +g |
| 20 |
5 19
|
cfv |
⊢ ( +g ‘ 𝑤 ) |
| 21 |
16
|
cv |
⊢ 𝑦 |
| 22 |
18 21 20
|
co |
⊢ ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) |
| 23 |
17 22
|
wceq |
⊢ 𝑧 = ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) |
| 24 |
23 16 13
|
wrex |
⊢ ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) |
| 25 |
24 15 10
|
crio |
⊢ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) |
| 26 |
9 14 25
|
cmpt |
⊢ ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) ) |
| 27 |
3 8 7 7 26
|
cmpo |
⊢ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑤 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) ) ) |
| 28 |
1 2 27
|
cmpt |
⊢ ( 𝑤 ∈ V ↦ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑤 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) ) ) ) |
| 29 |
0 28
|
wceq |
⊢ proj1 = ( 𝑤 ∈ V ↦ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑤 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 ) ↦ ( ℩ 𝑥 ∈ 𝑡 ∃ 𝑦 ∈ 𝑢 𝑧 = ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) ) ) ) |