Metamath Proof Explorer


Definition df-plr

Description: Define addition on signed reals. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. From Proposition 9-4.3 of Gleason p. 126. (Contributed by NM, 25-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion df-plr +R = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥R𝑦R ) ∧ ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( 𝑤 +P 𝑢 ) , ( 𝑣 +P 𝑓 ) ⟩ ] ~R ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cplr +R
1 vx 𝑥
2 vy 𝑦
3 vz 𝑧
4 1 cv 𝑥
5 cnr R
6 4 5 wcel 𝑥R
7 2 cv 𝑦
8 7 5 wcel 𝑦R
9 6 8 wa ( 𝑥R𝑦R )
10 vw 𝑤
11 vv 𝑣
12 vu 𝑢
13 vf 𝑓
14 10 cv 𝑤
15 11 cv 𝑣
16 14 15 cop 𝑤 , 𝑣
17 cer ~R
18 16 17 cec [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R
19 4 18 wceq 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R
20 12 cv 𝑢
21 13 cv 𝑓
22 20 21 cop 𝑢 , 𝑓
23 22 17 cec [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R
24 7 23 wceq 𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R
25 19 24 wa ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R )
26 3 cv 𝑧
27 cpp +P
28 14 20 27 co ( 𝑤 +P 𝑢 )
29 15 21 27 co ( 𝑣 +P 𝑓 )
30 28 29 cop ⟨ ( 𝑤 +P 𝑢 ) , ( 𝑣 +P 𝑓 ) ⟩
31 30 17 cec [ ⟨ ( 𝑤 +P 𝑢 ) , ( 𝑣 +P 𝑓 ) ⟩ ] ~R
32 26 31 wceq 𝑧 = [ ⟨ ( 𝑤 +P 𝑢 ) , ( 𝑣 +P 𝑓 ) ⟩ ] ~R
33 25 32 wa ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( 𝑤 +P 𝑢 ) , ( 𝑣 +P 𝑓 ) ⟩ ] ~R )
34 33 13 wex 𝑓 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( 𝑤 +P 𝑢 ) , ( 𝑣 +P 𝑓 ) ⟩ ] ~R )
35 34 12 wex 𝑢𝑓 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( 𝑤 +P 𝑢 ) , ( 𝑣 +P 𝑓 ) ⟩ ] ~R )
36 35 11 wex 𝑣𝑢𝑓 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( 𝑤 +P 𝑢 ) , ( 𝑣 +P 𝑓 ) ⟩ ] ~R )
37 36 10 wex 𝑤𝑣𝑢𝑓 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( 𝑤 +P 𝑢 ) , ( 𝑣 +P 𝑓 ) ⟩ ] ~R )
38 9 37 wa ( ( 𝑥R𝑦R ) ∧ ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( 𝑤 +P 𝑢 ) , ( 𝑣 +P 𝑓 ) ⟩ ] ~R ) )
39 38 1 2 3 coprab { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥R𝑦R ) ∧ ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( 𝑤 +P 𝑢 ) , ( 𝑣 +P 𝑓 ) ⟩ ] ~R ) ) }
40 0 39 wceq +R = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥R𝑦R ) ∧ ∃ 𝑤𝑣𝑢𝑓 ( ( 𝑥 = [ ⟨ 𝑤 , 𝑣 ⟩ ] ~R𝑦 = [ ⟨ 𝑢 , 𝑓 ⟩ ] ~R ) ∧ 𝑧 = [ ⟨ ( 𝑤 +P 𝑢 ) , ( 𝑣 +P 𝑓 ) ⟩ ] ~R ) ) }