Metamath Proof Explorer


Definition df-plt

Description: Define less-than ordering for posets and related structures. Unlike df-base and df-ple , this is a derived component extractor and not an extensible structure component extractor that defines the poset. (Contributed by NM, 12-Oct-2011) (Revised by Mario Carneiro, 8-Feb-2015)

Ref Expression
Assertion df-plt lt = ( 𝑝 ∈ V ↦ ( ( le ‘ 𝑝 ) ∖ I ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cplt lt
1 vp 𝑝
2 cvv V
3 cple le
4 1 cv 𝑝
5 4 3 cfv ( le ‘ 𝑝 )
6 cid I
7 5 6 cdif ( ( le ‘ 𝑝 ) ∖ I )
8 1 2 7 cmpt ( 𝑝 ∈ V ↦ ( ( le ‘ 𝑝 ) ∖ I ) )
9 0 8 wceq lt = ( 𝑝 ∈ V ↦ ( ( le ‘ 𝑝 ) ∖ I ) )