Metamath Proof Explorer


Definition df-ply1

Description: Define the algebra of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Assertion df-ply1 Poly1 = ( 𝑟 ∈ V ↦ ( ( PwSer1𝑟 ) ↾s ( Base ‘ ( 1o mPoly 𝑟 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpl1 Poly1
1 vr 𝑟
2 cvv V
3 cps1 PwSer1
4 1 cv 𝑟
5 4 3 cfv ( PwSer1𝑟 )
6 cress s
7 cbs Base
8 c1o 1o
9 cmpl mPoly
10 8 4 9 co ( 1o mPoly 𝑟 )
11 10 7 cfv ( Base ‘ ( 1o mPoly 𝑟 ) )
12 5 11 6 co ( ( PwSer1𝑟 ) ↾s ( Base ‘ ( 1o mPoly 𝑟 ) ) )
13 1 2 12 cmpt ( 𝑟 ∈ V ↦ ( ( PwSer1𝑟 ) ↾s ( Base ‘ ( 1o mPoly 𝑟 ) ) ) )
14 0 13 wceq Poly1 = ( 𝑟 ∈ V ↦ ( ( PwSer1𝑟 ) ↾s ( Base ‘ ( 1o mPoly 𝑟 ) ) ) )