Description: Define the algebra of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-ply1 | ⊢ Poly1 = ( 𝑟 ∈ V ↦ ( ( PwSer1 ‘ 𝑟 ) ↾s ( Base ‘ ( 1o mPoly 𝑟 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cpl1 | ⊢ Poly1 | |
1 | vr | ⊢ 𝑟 | |
2 | cvv | ⊢ V | |
3 | cps1 | ⊢ PwSer1 | |
4 | 1 | cv | ⊢ 𝑟 |
5 | 4 3 | cfv | ⊢ ( PwSer1 ‘ 𝑟 ) |
6 | cress | ⊢ ↾s | |
7 | cbs | ⊢ Base | |
8 | c1o | ⊢ 1o | |
9 | cmpl | ⊢ mPoly | |
10 | 8 4 9 | co | ⊢ ( 1o mPoly 𝑟 ) |
11 | 10 7 | cfv | ⊢ ( Base ‘ ( 1o mPoly 𝑟 ) ) |
12 | 5 11 6 | co | ⊢ ( ( PwSer1 ‘ 𝑟 ) ↾s ( Base ‘ ( 1o mPoly 𝑟 ) ) ) |
13 | 1 2 12 | cmpt | ⊢ ( 𝑟 ∈ V ↦ ( ( PwSer1 ‘ 𝑟 ) ↾s ( Base ‘ ( 1o mPoly 𝑟 ) ) ) ) |
14 | 0 13 | wceq | ⊢ Poly1 = ( 𝑟 ∈ V ↦ ( ( PwSer1 ‘ 𝑟 ) ↾s ( Base ‘ ( 1o mPoly 𝑟 ) ) ) ) |