Step |
Hyp |
Ref |
Expression |
0 |
|
cpm2mp |
⊢ pMatToMatPoly |
1 |
|
vn |
⊢ 𝑛 |
2 |
|
cfn |
⊢ Fin |
3 |
|
vr |
⊢ 𝑟 |
4 |
|
cvv |
⊢ V |
5 |
|
vm |
⊢ 𝑚 |
6 |
|
cbs |
⊢ Base |
7 |
1
|
cv |
⊢ 𝑛 |
8 |
|
cmat |
⊢ Mat |
9 |
|
cpl1 |
⊢ Poly1 |
10 |
3
|
cv |
⊢ 𝑟 |
11 |
10 9
|
cfv |
⊢ ( Poly1 ‘ 𝑟 ) |
12 |
7 11 8
|
co |
⊢ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) |
13 |
12 6
|
cfv |
⊢ ( Base ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) |
14 |
7 10 8
|
co |
⊢ ( 𝑛 Mat 𝑟 ) |
15 |
|
va |
⊢ 𝑎 |
16 |
15
|
cv |
⊢ 𝑎 |
17 |
16 9
|
cfv |
⊢ ( Poly1 ‘ 𝑎 ) |
18 |
|
vq |
⊢ 𝑞 |
19 |
18
|
cv |
⊢ 𝑞 |
20 |
|
cgsu |
⊢ Σg |
21 |
|
vk |
⊢ 𝑘 |
22 |
|
cn0 |
⊢ ℕ0 |
23 |
5
|
cv |
⊢ 𝑚 |
24 |
|
cdecpmat |
⊢ decompPMat |
25 |
21
|
cv |
⊢ 𝑘 |
26 |
23 25 24
|
co |
⊢ ( 𝑚 decompPMat 𝑘 ) |
27 |
|
cvsca |
⊢ ·𝑠 |
28 |
19 27
|
cfv |
⊢ ( ·𝑠 ‘ 𝑞 ) |
29 |
|
cmg |
⊢ .g |
30 |
|
cmgp |
⊢ mulGrp |
31 |
19 30
|
cfv |
⊢ ( mulGrp ‘ 𝑞 ) |
32 |
31 29
|
cfv |
⊢ ( .g ‘ ( mulGrp ‘ 𝑞 ) ) |
33 |
|
cv1 |
⊢ var1 |
34 |
16 33
|
cfv |
⊢ ( var1 ‘ 𝑎 ) |
35 |
25 34 32
|
co |
⊢ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) |
36 |
26 35 28
|
co |
⊢ ( ( 𝑚 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) |
37 |
21 22 36
|
cmpt |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) ) |
38 |
19 37 20
|
co |
⊢ ( 𝑞 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) ) ) |
39 |
18 17 38
|
csb |
⊢ ⦋ ( Poly1 ‘ 𝑎 ) / 𝑞 ⦌ ( 𝑞 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) ) ) |
40 |
15 14 39
|
csb |
⊢ ⦋ ( 𝑛 Mat 𝑟 ) / 𝑎 ⦌ ⦋ ( Poly1 ‘ 𝑎 ) / 𝑞 ⦌ ( 𝑞 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) ) ) |
41 |
5 13 40
|
cmpt |
⊢ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ↦ ⦋ ( 𝑛 Mat 𝑟 ) / 𝑎 ⦌ ⦋ ( Poly1 ‘ 𝑎 ) / 𝑞 ⦌ ( 𝑞 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) ) ) ) |
42 |
1 3 2 4 41
|
cmpo |
⊢ ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ↦ ⦋ ( 𝑛 Mat 𝑟 ) / 𝑎 ⦌ ⦋ ( Poly1 ‘ 𝑎 ) / 𝑞 ⦌ ( 𝑞 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) ) ) ) ) |
43 |
0 42
|
wceq |
⊢ pMatToMatPoly = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat ( Poly1 ‘ 𝑟 ) ) ) ↦ ⦋ ( 𝑛 Mat 𝑟 ) / 𝑎 ⦌ ⦋ ( Poly1 ‘ 𝑎 ) / 𝑞 ⦌ ( 𝑞 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( ·𝑠 ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) ) ) ) ) |