| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cpm2mp | 
							⊢  pMatToMatPoly   | 
						
						
							| 1 | 
							
								
							 | 
							vn | 
							⊢ 𝑛  | 
						
						
							| 2 | 
							
								
							 | 
							cfn | 
							⊢ Fin  | 
						
						
							| 3 | 
							
								
							 | 
							vr | 
							⊢ 𝑟  | 
						
						
							| 4 | 
							
								
							 | 
							cvv | 
							⊢ V  | 
						
						
							| 5 | 
							
								
							 | 
							vm | 
							⊢ 𝑚  | 
						
						
							| 6 | 
							
								
							 | 
							cbs | 
							⊢ Base  | 
						
						
							| 7 | 
							
								1
							 | 
							cv | 
							⊢ 𝑛  | 
						
						
							| 8 | 
							
								
							 | 
							cmat | 
							⊢  Mat   | 
						
						
							| 9 | 
							
								
							 | 
							cpl1 | 
							⊢ Poly1  | 
						
						
							| 10 | 
							
								3
							 | 
							cv | 
							⊢ 𝑟  | 
						
						
							| 11 | 
							
								10 9
							 | 
							cfv | 
							⊢ ( Poly1 ‘ 𝑟 )  | 
						
						
							| 12 | 
							
								7 11 8
							 | 
							co | 
							⊢ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) )  | 
						
						
							| 13 | 
							
								12 6
							 | 
							cfv | 
							⊢ ( Base ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) )  | 
						
						
							| 14 | 
							
								7 10 8
							 | 
							co | 
							⊢ ( 𝑛  Mat  𝑟 )  | 
						
						
							| 15 | 
							
								
							 | 
							va | 
							⊢ 𝑎  | 
						
						
							| 16 | 
							
								15
							 | 
							cv | 
							⊢ 𝑎  | 
						
						
							| 17 | 
							
								16 9
							 | 
							cfv | 
							⊢ ( Poly1 ‘ 𝑎 )  | 
						
						
							| 18 | 
							
								
							 | 
							vq | 
							⊢ 𝑞  | 
						
						
							| 19 | 
							
								18
							 | 
							cv | 
							⊢ 𝑞  | 
						
						
							| 20 | 
							
								
							 | 
							cgsu | 
							⊢  Σg   | 
						
						
							| 21 | 
							
								
							 | 
							vk | 
							⊢ 𝑘  | 
						
						
							| 22 | 
							
								
							 | 
							cn0 | 
							⊢ ℕ0  | 
						
						
							| 23 | 
							
								5
							 | 
							cv | 
							⊢ 𝑚  | 
						
						
							| 24 | 
							
								
							 | 
							cdecpmat | 
							⊢  decompPMat   | 
						
						
							| 25 | 
							
								21
							 | 
							cv | 
							⊢ 𝑘  | 
						
						
							| 26 | 
							
								23 25 24
							 | 
							co | 
							⊢ ( 𝑚  decompPMat  𝑘 )  | 
						
						
							| 27 | 
							
								
							 | 
							cvsca | 
							⊢  ·𝑠   | 
						
						
							| 28 | 
							
								19 27
							 | 
							cfv | 
							⊢ (  ·𝑠  ‘ 𝑞 )  | 
						
						
							| 29 | 
							
								
							 | 
							cmg | 
							⊢ .g  | 
						
						
							| 30 | 
							
								
							 | 
							cmgp | 
							⊢ mulGrp  | 
						
						
							| 31 | 
							
								19 30
							 | 
							cfv | 
							⊢ ( mulGrp ‘ 𝑞 )  | 
						
						
							| 32 | 
							
								31 29
							 | 
							cfv | 
							⊢ ( .g ‘ ( mulGrp ‘ 𝑞 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							cv1 | 
							⊢ var1  | 
						
						
							| 34 | 
							
								16 33
							 | 
							cfv | 
							⊢ ( var1 ‘ 𝑎 )  | 
						
						
							| 35 | 
							
								25 34 32
							 | 
							co | 
							⊢ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) )  | 
						
						
							| 36 | 
							
								26 35 28
							 | 
							co | 
							⊢ ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) )  | 
						
						
							| 37 | 
							
								21 22 36
							 | 
							cmpt | 
							⊢ ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) )  | 
						
						
							| 38 | 
							
								19 37 20
							 | 
							co | 
							⊢ ( 𝑞  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) ) )  | 
						
						
							| 39 | 
							
								18 17 38
							 | 
							csb | 
							⊢ ⦋ ( Poly1 ‘ 𝑎 )  /  𝑞 ⦌ ( 𝑞  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) ) )  | 
						
						
							| 40 | 
							
								15 14 39
							 | 
							csb | 
							⊢ ⦋ ( 𝑛  Mat  𝑟 )  /  𝑎 ⦌ ⦋ ( Poly1 ‘ 𝑎 )  /  𝑞 ⦌ ( 𝑞  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) ) )  | 
						
						
							| 41 | 
							
								5 13 40
							 | 
							cmpt | 
							⊢ ( 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) )  ↦  ⦋ ( 𝑛  Mat  𝑟 )  /  𝑎 ⦌ ⦋ ( Poly1 ‘ 𝑎 )  /  𝑞 ⦌ ( 𝑞  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) ) ) )  | 
						
						
							| 42 | 
							
								1 3 2 4 41
							 | 
							cmpo | 
							⊢ ( 𝑛  ∈  Fin ,  𝑟  ∈  V  ↦  ( 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) )  ↦  ⦋ ( 𝑛  Mat  𝑟 )  /  𝑎 ⦌ ⦋ ( Poly1 ‘ 𝑎 )  /  𝑞 ⦌ ( 𝑞  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) ) ) ) )  | 
						
						
							| 43 | 
							
								0 42
							 | 
							wceq | 
							⊢  pMatToMatPoly   =  ( 𝑛  ∈  Fin ,  𝑟  ∈  V  ↦  ( 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) )  ↦  ⦋ ( 𝑛  Mat  𝑟 )  /  𝑎 ⦌ ⦋ ( Poly1 ‘ 𝑎 )  /  𝑞 ⦌ ( 𝑞  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) ) ) ) )  |