Metamath Proof Explorer


Definition df-pm2mp

Description: Transformation of a polynomial matrix (over a ring) into a polynomial over matrices (over the same ring). (Contributed by AV, 5-Dec-2019)

Ref Expression
Assertion df-pm2mp pMatToMatPoly = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ↦ ( 𝑛 Mat 𝑟 ) / 𝑎 ( Poly1𝑎 ) / 𝑞 ( 𝑞 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( ·𝑠𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1𝑎 ) ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpm2mp pMatToMatPoly
1 vn 𝑛
2 cfn Fin
3 vr 𝑟
4 cvv V
5 vm 𝑚
6 cbs Base
7 1 cv 𝑛
8 cmat Mat
9 cpl1 Poly1
10 3 cv 𝑟
11 10 9 cfv ( Poly1𝑟 )
12 7 11 8 co ( 𝑛 Mat ( Poly1𝑟 ) )
13 12 6 cfv ( Base ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) )
14 7 10 8 co ( 𝑛 Mat 𝑟 )
15 va 𝑎
16 15 cv 𝑎
17 16 9 cfv ( Poly1𝑎 )
18 vq 𝑞
19 18 cv 𝑞
20 cgsu Σg
21 vk 𝑘
22 cn0 0
23 5 cv 𝑚
24 cdecpmat decompPMat
25 21 cv 𝑘
26 23 25 24 co ( 𝑚 decompPMat 𝑘 )
27 cvsca ·𝑠
28 19 27 cfv ( ·𝑠𝑞 )
29 cmg .g
30 cmgp mulGrp
31 19 30 cfv ( mulGrp ‘ 𝑞 )
32 31 29 cfv ( .g ‘ ( mulGrp ‘ 𝑞 ) )
33 cv1 var1
34 16 33 cfv ( var1𝑎 )
35 25 34 32 co ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1𝑎 ) )
36 26 35 28 co ( ( 𝑚 decompPMat 𝑘 ) ( ·𝑠𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1𝑎 ) ) )
37 21 22 36 cmpt ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( ·𝑠𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1𝑎 ) ) ) )
38 19 37 20 co ( 𝑞 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( ·𝑠𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1𝑎 ) ) ) ) )
39 18 17 38 csb ( Poly1𝑎 ) / 𝑞 ( 𝑞 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( ·𝑠𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1𝑎 ) ) ) ) )
40 15 14 39 csb ( 𝑛 Mat 𝑟 ) / 𝑎 ( Poly1𝑎 ) / 𝑞 ( 𝑞 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( ·𝑠𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1𝑎 ) ) ) ) )
41 5 13 40 cmpt ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ↦ ( 𝑛 Mat 𝑟 ) / 𝑎 ( Poly1𝑎 ) / 𝑞 ( 𝑞 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( ·𝑠𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1𝑎 ) ) ) ) ) )
42 1 3 2 4 41 cmpo ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ↦ ( 𝑛 Mat 𝑟 ) / 𝑎 ( Poly1𝑎 ) / 𝑞 ( 𝑞 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( ·𝑠𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1𝑎 ) ) ) ) ) ) )
43 0 42 wceq pMatToMatPoly = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat ( Poly1𝑟 ) ) ) ↦ ( 𝑛 Mat 𝑟 ) / 𝑎 ( Poly1𝑎 ) / 𝑞 ( 𝑞 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( ·𝑠𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1𝑎 ) ) ) ) ) ) )