| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cpmap | ⊢ pmap | 
						
							| 1 |  | vk | ⊢ 𝑘 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | va | ⊢ 𝑎 | 
						
							| 4 |  | cbs | ⊢ Base | 
						
							| 5 | 1 | cv | ⊢ 𝑘 | 
						
							| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑘 ) | 
						
							| 7 |  | vp | ⊢ 𝑝 | 
						
							| 8 |  | catm | ⊢ Atoms | 
						
							| 9 | 5 8 | cfv | ⊢ ( Atoms ‘ 𝑘 ) | 
						
							| 10 | 7 | cv | ⊢ 𝑝 | 
						
							| 11 |  | cple | ⊢ le | 
						
							| 12 | 5 11 | cfv | ⊢ ( le ‘ 𝑘 ) | 
						
							| 13 | 3 | cv | ⊢ 𝑎 | 
						
							| 14 | 10 13 12 | wbr | ⊢ 𝑝 ( le ‘ 𝑘 ) 𝑎 | 
						
							| 15 | 14 7 9 | crab | ⊢ { 𝑝  ∈  ( Atoms ‘ 𝑘 )  ∣  𝑝 ( le ‘ 𝑘 ) 𝑎 } | 
						
							| 16 | 3 6 15 | cmpt | ⊢ ( 𝑎  ∈  ( Base ‘ 𝑘 )  ↦  { 𝑝  ∈  ( Atoms ‘ 𝑘 )  ∣  𝑝 ( le ‘ 𝑘 ) 𝑎 } ) | 
						
							| 17 | 1 2 16 | cmpt | ⊢ ( 𝑘  ∈  V  ↦  ( 𝑎  ∈  ( Base ‘ 𝑘 )  ↦  { 𝑝  ∈  ( Atoms ‘ 𝑘 )  ∣  𝑝 ( le ‘ 𝑘 ) 𝑎 } ) ) | 
						
							| 18 | 0 17 | wceq | ⊢ pmap  =  ( 𝑘  ∈  V  ↦  ( 𝑎  ∈  ( Base ‘ 𝑘 )  ↦  { 𝑝  ∈  ( Atoms ‘ 𝑘 )  ∣  𝑝 ( le ‘ 𝑘 ) 𝑎 } ) ) |