Step |
Hyp |
Ref |
Expression |
0 |
|
cpmap |
⊢ pmap |
1 |
|
vk |
⊢ 𝑘 |
2 |
|
cvv |
⊢ V |
3 |
|
va |
⊢ 𝑎 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ 𝑘 |
6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑘 ) |
7 |
|
vp |
⊢ 𝑝 |
8 |
|
catm |
⊢ Atoms |
9 |
5 8
|
cfv |
⊢ ( Atoms ‘ 𝑘 ) |
10 |
7
|
cv |
⊢ 𝑝 |
11 |
|
cple |
⊢ le |
12 |
5 11
|
cfv |
⊢ ( le ‘ 𝑘 ) |
13 |
3
|
cv |
⊢ 𝑎 |
14 |
10 13 12
|
wbr |
⊢ 𝑝 ( le ‘ 𝑘 ) 𝑎 |
15 |
14 7 9
|
crab |
⊢ { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) 𝑎 } |
16 |
3 6 15
|
cmpt |
⊢ ( 𝑎 ∈ ( Base ‘ 𝑘 ) ↦ { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) 𝑎 } ) |
17 |
1 2 16
|
cmpt |
⊢ ( 𝑘 ∈ V ↦ ( 𝑎 ∈ ( Base ‘ 𝑘 ) ↦ { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) 𝑎 } ) ) |
18 |
0 17
|
wceq |
⊢ pmap = ( 𝑘 ∈ V ↦ ( 𝑎 ∈ ( Base ‘ 𝑘 ) ↦ { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) 𝑎 } ) ) |