Metamath Proof Explorer


Definition df-pmap

Description: Define projective map for k at a . Definition in Theorem 15.5 of MaedaMaeda p. 62. (Contributed by NM, 2-Oct-2011)

Ref Expression
Assertion df-pmap pmap = ( 𝑘 ∈ V ↦ ( 𝑎 ∈ ( Base ‘ 𝑘 ) ↦ { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) 𝑎 } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpmap pmap
1 vk 𝑘
2 cvv V
3 va 𝑎
4 cbs Base
5 1 cv 𝑘
6 5 4 cfv ( Base ‘ 𝑘 )
7 vp 𝑝
8 catm Atoms
9 5 8 cfv ( Atoms ‘ 𝑘 )
10 7 cv 𝑝
11 cple le
12 5 11 cfv ( le ‘ 𝑘 )
13 3 cv 𝑎
14 10 13 12 wbr 𝑝 ( le ‘ 𝑘 ) 𝑎
15 14 7 9 crab { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) 𝑎 }
16 3 6 15 cmpt ( 𝑎 ∈ ( Base ‘ 𝑘 ) ↦ { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) 𝑎 } )
17 1 2 16 cmpt ( 𝑘 ∈ V ↦ ( 𝑎 ∈ ( Base ‘ 𝑘 ) ↦ { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) 𝑎 } ) )
18 0 17 wceq pmap = ( 𝑘 ∈ V ↦ ( 𝑎 ∈ ( Base ‘ 𝑘 ) ↦ { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) 𝑎 } ) )