Step |
Hyp |
Ref |
Expression |
0 |
|
cpmtr |
⊢ pmTrsp |
1 |
|
vd |
⊢ 𝑑 |
2 |
|
cvv |
⊢ V |
3 |
|
vp |
⊢ 𝑝 |
4 |
|
vy |
⊢ 𝑦 |
5 |
1
|
cv |
⊢ 𝑑 |
6 |
5
|
cpw |
⊢ 𝒫 𝑑 |
7 |
4
|
cv |
⊢ 𝑦 |
8 |
|
cen |
⊢ ≈ |
9 |
|
c2o |
⊢ 2o |
10 |
7 9 8
|
wbr |
⊢ 𝑦 ≈ 2o |
11 |
10 4 6
|
crab |
⊢ { 𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o } |
12 |
|
vz |
⊢ 𝑧 |
13 |
12
|
cv |
⊢ 𝑧 |
14 |
3
|
cv |
⊢ 𝑝 |
15 |
13 14
|
wcel |
⊢ 𝑧 ∈ 𝑝 |
16 |
13
|
csn |
⊢ { 𝑧 } |
17 |
14 16
|
cdif |
⊢ ( 𝑝 ∖ { 𝑧 } ) |
18 |
17
|
cuni |
⊢ ∪ ( 𝑝 ∖ { 𝑧 } ) |
19 |
15 18 13
|
cif |
⊢ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) |
20 |
12 5 19
|
cmpt |
⊢ ( 𝑧 ∈ 𝑑 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) |
21 |
3 11 20
|
cmpt |
⊢ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝑑 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
22 |
1 2 21
|
cmpt |
⊢ ( 𝑑 ∈ V ↦ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝑑 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
23 |
0 22
|
wceq |
⊢ pmTrsp = ( 𝑑 ∈ V ↦ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝑑 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |