| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cpmtr | ⊢ pmTrsp | 
						
							| 1 |  | vd | ⊢ 𝑑 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vp | ⊢ 𝑝 | 
						
							| 4 |  | vy | ⊢ 𝑦 | 
						
							| 5 | 1 | cv | ⊢ 𝑑 | 
						
							| 6 | 5 | cpw | ⊢ 𝒫  𝑑 | 
						
							| 7 | 4 | cv | ⊢ 𝑦 | 
						
							| 8 |  | cen | ⊢  ≈ | 
						
							| 9 |  | c2o | ⊢ 2o | 
						
							| 10 | 7 9 8 | wbr | ⊢ 𝑦  ≈  2o | 
						
							| 11 | 10 4 6 | crab | ⊢ { 𝑦  ∈  𝒫  𝑑  ∣  𝑦  ≈  2o } | 
						
							| 12 |  | vz | ⊢ 𝑧 | 
						
							| 13 | 12 | cv | ⊢ 𝑧 | 
						
							| 14 | 3 | cv | ⊢ 𝑝 | 
						
							| 15 | 13 14 | wcel | ⊢ 𝑧  ∈  𝑝 | 
						
							| 16 | 13 | csn | ⊢ { 𝑧 } | 
						
							| 17 | 14 16 | cdif | ⊢ ( 𝑝  ∖  { 𝑧 } ) | 
						
							| 18 | 17 | cuni | ⊢ ∪  ( 𝑝  ∖  { 𝑧 } ) | 
						
							| 19 | 15 18 13 | cif | ⊢ if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) | 
						
							| 20 | 12 5 19 | cmpt | ⊢ ( 𝑧  ∈  𝑑  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) | 
						
							| 21 | 3 11 20 | cmpt | ⊢ ( 𝑝  ∈  { 𝑦  ∈  𝒫  𝑑  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  𝑑  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) ) | 
						
							| 22 | 1 2 21 | cmpt | ⊢ ( 𝑑  ∈  V  ↦  ( 𝑝  ∈  { 𝑦  ∈  𝒫  𝑑  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  𝑑  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) ) ) | 
						
							| 23 | 0 22 | wceq | ⊢ pmTrsp  =  ( 𝑑  ∈  V  ↦  ( 𝑝  ∈  { 𝑦  ∈  𝒫  𝑑  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  𝑑  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) ) ) |