Metamath Proof Explorer


Definition df-pmtr

Description: Define a function that generates the transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Assertion df-pmtr pmTrsp = ( 𝑑 ∈ V ↦ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o } ↦ ( 𝑧𝑑 ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpmtr pmTrsp
1 vd 𝑑
2 cvv V
3 vp 𝑝
4 vy 𝑦
5 1 cv 𝑑
6 5 cpw 𝒫 𝑑
7 4 cv 𝑦
8 cen
9 c2o 2o
10 7 9 8 wbr 𝑦 ≈ 2o
11 10 4 6 crab { 𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o }
12 vz 𝑧
13 12 cv 𝑧
14 3 cv 𝑝
15 13 14 wcel 𝑧𝑝
16 13 csn { 𝑧 }
17 14 16 cdif ( 𝑝 ∖ { 𝑧 } )
18 17 cuni ( 𝑝 ∖ { 𝑧 } )
19 15 18 13 cif if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 )
20 12 5 19 cmpt ( 𝑧𝑑 ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) )
21 3 11 20 cmpt ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o } ↦ ( 𝑧𝑑 ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) )
22 1 2 21 cmpt ( 𝑑 ∈ V ↦ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o } ↦ ( 𝑧𝑑 ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) )
23 0 22 wceq pmTrsp = ( 𝑑 ∈ V ↦ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o } ↦ ( 𝑧𝑑 ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) )