Step |
Hyp |
Ref |
Expression |
0 |
|
cpnrm |
⊢ PNrm |
1 |
|
vj |
⊢ 𝑗 |
2 |
|
cnrm |
⊢ Nrm |
3 |
|
ccld |
⊢ Clsd |
4 |
1
|
cv |
⊢ 𝑗 |
5 |
4 3
|
cfv |
⊢ ( Clsd ‘ 𝑗 ) |
6 |
|
vf |
⊢ 𝑓 |
7 |
|
cmap |
⊢ ↑m |
8 |
|
cn |
⊢ ℕ |
9 |
4 8 7
|
co |
⊢ ( 𝑗 ↑m ℕ ) |
10 |
6
|
cv |
⊢ 𝑓 |
11 |
10
|
crn |
⊢ ran 𝑓 |
12 |
11
|
cint |
⊢ ∩ ran 𝑓 |
13 |
6 9 12
|
cmpt |
⊢ ( 𝑓 ∈ ( 𝑗 ↑m ℕ ) ↦ ∩ ran 𝑓 ) |
14 |
13
|
crn |
⊢ ran ( 𝑓 ∈ ( 𝑗 ↑m ℕ ) ↦ ∩ ran 𝑓 ) |
15 |
5 14
|
wss |
⊢ ( Clsd ‘ 𝑗 ) ⊆ ran ( 𝑓 ∈ ( 𝑗 ↑m ℕ ) ↦ ∩ ran 𝑓 ) |
16 |
15 1 2
|
crab |
⊢ { 𝑗 ∈ Nrm ∣ ( Clsd ‘ 𝑗 ) ⊆ ran ( 𝑓 ∈ ( 𝑗 ↑m ℕ ) ↦ ∩ ran 𝑓 ) } |
17 |
0 16
|
wceq |
⊢ PNrm = { 𝑗 ∈ Nrm ∣ ( Clsd ‘ 𝑗 ) ⊆ ran ( 𝑓 ∈ ( 𝑗 ↑m ℕ ) ↦ ∩ ran 𝑓 ) } |