Step |
Hyp |
Ref |
Expression |
0 |
|
cR |
⊢ 𝑅 |
1 |
|
cA |
⊢ 𝐴 |
2 |
1 0
|
wpo |
⊢ 𝑅 Po 𝐴 |
3 |
|
vx |
⊢ 𝑥 |
4 |
|
vy |
⊢ 𝑦 |
5 |
|
vz |
⊢ 𝑧 |
6 |
3
|
cv |
⊢ 𝑥 |
7 |
6 6 0
|
wbr |
⊢ 𝑥 𝑅 𝑥 |
8 |
7
|
wn |
⊢ ¬ 𝑥 𝑅 𝑥 |
9 |
4
|
cv |
⊢ 𝑦 |
10 |
6 9 0
|
wbr |
⊢ 𝑥 𝑅 𝑦 |
11 |
5
|
cv |
⊢ 𝑧 |
12 |
9 11 0
|
wbr |
⊢ 𝑦 𝑅 𝑧 |
13 |
10 12
|
wa |
⊢ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) |
14 |
6 11 0
|
wbr |
⊢ 𝑥 𝑅 𝑧 |
15 |
13 14
|
wi |
⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) |
16 |
8 15
|
wa |
⊢ ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
17 |
16 5 1
|
wral |
⊢ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
18 |
17 4 1
|
wral |
⊢ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
19 |
18 3 1
|
wral |
⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
20 |
2 19
|
wb |
⊢ ( 𝑅 Po 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |