Metamath Proof Explorer


Definition df-po

Description: Define the strict partial order predicate. Definition of Enderton p. 168. The expression R Po A means R is a partial order on A . For example, < Po RR is true, while <_ Po RR is false ( ex-po ). (Contributed by NM, 16-Mar-1997)

Ref Expression
Assertion df-po ( 𝑅 Po 𝐴 ↔ ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR 𝑅
1 cA 𝐴
2 1 0 wpo 𝑅 Po 𝐴
3 vx 𝑥
4 vy 𝑦
5 vz 𝑧
6 3 cv 𝑥
7 6 6 0 wbr 𝑥 𝑅 𝑥
8 7 wn ¬ 𝑥 𝑅 𝑥
9 4 cv 𝑦
10 6 9 0 wbr 𝑥 𝑅 𝑦
11 5 cv 𝑧
12 9 11 0 wbr 𝑦 𝑅 𝑧
13 10 12 wa ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 )
14 6 11 0 wbr 𝑥 𝑅 𝑧
15 13 14 wi ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 )
16 8 15 wa ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) )
17 16 5 1 wral 𝑧𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) )
18 17 4 1 wral 𝑦𝐴𝑧𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) )
19 18 3 1 wral 𝑥𝐴𝑦𝐴𝑧𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) )
20 2 19 wb ( 𝑅 Po 𝐴 ↔ ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) )