| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cR | ⊢ 𝑅 | 
						
							| 1 |  | cA | ⊢ 𝐴 | 
						
							| 2 | 1 0 | wpo | ⊢ 𝑅  Po  𝐴 | 
						
							| 3 |  | vx | ⊢ 𝑥 | 
						
							| 4 |  | vy | ⊢ 𝑦 | 
						
							| 5 |  | vz | ⊢ 𝑧 | 
						
							| 6 | 3 | cv | ⊢ 𝑥 | 
						
							| 7 | 6 6 0 | wbr | ⊢ 𝑥 𝑅 𝑥 | 
						
							| 8 | 7 | wn | ⊢ ¬  𝑥 𝑅 𝑥 | 
						
							| 9 | 4 | cv | ⊢ 𝑦 | 
						
							| 10 | 6 9 0 | wbr | ⊢ 𝑥 𝑅 𝑦 | 
						
							| 11 | 5 | cv | ⊢ 𝑧 | 
						
							| 12 | 9 11 0 | wbr | ⊢ 𝑦 𝑅 𝑧 | 
						
							| 13 | 10 12 | wa | ⊢ ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 ) | 
						
							| 14 | 6 11 0 | wbr | ⊢ 𝑥 𝑅 𝑧 | 
						
							| 15 | 13 14 | wi | ⊢ ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) | 
						
							| 16 | 8 15 | wa | ⊢ ( ¬  𝑥 𝑅 𝑥  ∧  ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) | 
						
							| 17 | 16 5 1 | wral | ⊢ ∀ 𝑧  ∈  𝐴 ( ¬  𝑥 𝑅 𝑥  ∧  ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) | 
						
							| 18 | 17 4 1 | wral | ⊢ ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ¬  𝑥 𝑅 𝑥  ∧  ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) | 
						
							| 19 | 18 3 1 | wral | ⊢ ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ¬  𝑥 𝑅 𝑥  ∧  ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) | 
						
							| 20 | 2 19 | wb | ⊢ ( 𝑅  Po  𝐴  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ¬  𝑥 𝑅 𝑥  ∧  ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑧 )  →  𝑥 𝑅 𝑧 ) ) ) |