Step |
Hyp |
Ref |
Expression |
0 |
|
cpolN |
⊢ ⊥𝑃 |
1 |
|
vl |
⊢ 𝑙 |
2 |
|
cvv |
⊢ V |
3 |
|
vm |
⊢ 𝑚 |
4 |
|
catm |
⊢ Atoms |
5 |
1
|
cv |
⊢ 𝑙 |
6 |
5 4
|
cfv |
⊢ ( Atoms ‘ 𝑙 ) |
7 |
6
|
cpw |
⊢ 𝒫 ( Atoms ‘ 𝑙 ) |
8 |
|
vp |
⊢ 𝑝 |
9 |
3
|
cv |
⊢ 𝑚 |
10 |
|
cpmap |
⊢ pmap |
11 |
5 10
|
cfv |
⊢ ( pmap ‘ 𝑙 ) |
12 |
|
coc |
⊢ oc |
13 |
5 12
|
cfv |
⊢ ( oc ‘ 𝑙 ) |
14 |
8
|
cv |
⊢ 𝑝 |
15 |
14 13
|
cfv |
⊢ ( ( oc ‘ 𝑙 ) ‘ 𝑝 ) |
16 |
15 11
|
cfv |
⊢ ( ( pmap ‘ 𝑙 ) ‘ ( ( oc ‘ 𝑙 ) ‘ 𝑝 ) ) |
17 |
8 9 16
|
ciin |
⊢ ∩ 𝑝 ∈ 𝑚 ( ( pmap ‘ 𝑙 ) ‘ ( ( oc ‘ 𝑙 ) ‘ 𝑝 ) ) |
18 |
6 17
|
cin |
⊢ ( ( Atoms ‘ 𝑙 ) ∩ ∩ 𝑝 ∈ 𝑚 ( ( pmap ‘ 𝑙 ) ‘ ( ( oc ‘ 𝑙 ) ‘ 𝑝 ) ) ) |
19 |
3 7 18
|
cmpt |
⊢ ( 𝑚 ∈ 𝒫 ( Atoms ‘ 𝑙 ) ↦ ( ( Atoms ‘ 𝑙 ) ∩ ∩ 𝑝 ∈ 𝑚 ( ( pmap ‘ 𝑙 ) ‘ ( ( oc ‘ 𝑙 ) ‘ 𝑝 ) ) ) ) |
20 |
1 2 19
|
cmpt |
⊢ ( 𝑙 ∈ V ↦ ( 𝑚 ∈ 𝒫 ( Atoms ‘ 𝑙 ) ↦ ( ( Atoms ‘ 𝑙 ) ∩ ∩ 𝑝 ∈ 𝑚 ( ( pmap ‘ 𝑙 ) ‘ ( ( oc ‘ 𝑙 ) ‘ 𝑝 ) ) ) ) ) |
21 |
0 20
|
wceq |
⊢ ⊥𝑃 = ( 𝑙 ∈ V ↦ ( 𝑚 ∈ 𝒫 ( Atoms ‘ 𝑙 ) ↦ ( ( Atoms ‘ 𝑙 ) ∩ ∩ 𝑝 ∈ 𝑚 ( ( pmap ‘ 𝑙 ) ‘ ( ( oc ‘ 𝑙 ) ‘ 𝑝 ) ) ) ) ) |