Metamath Proof Explorer


Definition df-poset

Description: Define the class of partially ordered sets (posets). A poset is a set equipped with a partial order, that is, a binary relation which is reflexive, antisymmetric, and transitive. Unlike a total order, in a partial order there may be pairs of elements where neither precedes the other. Definition of poset in Crawley p. 1. Note that Crawley-Dilworth require that a poset base set be nonempty, but we follow the convention of most authors who don't make this a requirement.

In our formalism of extensible structures, the base set of a poset f is denoted by ( Basef ) and its partial order by ( lef ) (for "less than or equal to"). The quantifiers E. b E. r provide a notational shorthand to allow us to refer to the base and ordering relation as b and r in the definition rather than having to repeat ( Basef ) and ( lef ) throughout. These quantifiers can be eliminated with ceqsex2v and related theorems. (Contributed by NM, 18-Oct-2012)

Ref Expression
Assertion df-poset Poset = { 𝑓 ∣ ∃ 𝑏𝑟 ( 𝑏 = ( Base ‘ 𝑓 ) ∧ 𝑟 = ( le ‘ 𝑓 ) ∧ ∀ 𝑥𝑏𝑦𝑏𝑧𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpo Poset
1 vf 𝑓
2 vb 𝑏
3 vr 𝑟
4 2 cv 𝑏
5 cbs Base
6 1 cv 𝑓
7 6 5 cfv ( Base ‘ 𝑓 )
8 4 7 wceq 𝑏 = ( Base ‘ 𝑓 )
9 3 cv 𝑟
10 cple le
11 6 10 cfv ( le ‘ 𝑓 )
12 9 11 wceq 𝑟 = ( le ‘ 𝑓 )
13 vx 𝑥
14 vy 𝑦
15 vz 𝑧
16 13 cv 𝑥
17 16 16 9 wbr 𝑥 𝑟 𝑥
18 14 cv 𝑦
19 16 18 9 wbr 𝑥 𝑟 𝑦
20 18 16 9 wbr 𝑦 𝑟 𝑥
21 19 20 wa ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 )
22 16 18 wceq 𝑥 = 𝑦
23 21 22 wi ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 )
24 15 cv 𝑧
25 18 24 9 wbr 𝑦 𝑟 𝑧
26 19 25 wa ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑧 )
27 16 24 9 wbr 𝑥 𝑟 𝑧
28 26 27 wi ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 )
29 17 23 28 w3a ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) )
30 29 15 4 wral 𝑧𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) )
31 30 14 4 wral 𝑦𝑏𝑧𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) )
32 31 13 4 wral 𝑥𝑏𝑦𝑏𝑧𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) )
33 8 12 32 w3a ( 𝑏 = ( Base ‘ 𝑓 ) ∧ 𝑟 = ( le ‘ 𝑓 ) ∧ ∀ 𝑥𝑏𝑦𝑏𝑧𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) )
34 33 3 wex 𝑟 ( 𝑏 = ( Base ‘ 𝑓 ) ∧ 𝑟 = ( le ‘ 𝑓 ) ∧ ∀ 𝑥𝑏𝑦𝑏𝑧𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) )
35 34 2 wex 𝑏𝑟 ( 𝑏 = ( Base ‘ 𝑓 ) ∧ 𝑟 = ( le ‘ 𝑓 ) ∧ ∀ 𝑥𝑏𝑦𝑏𝑧𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) )
36 35 1 cab { 𝑓 ∣ ∃ 𝑏𝑟 ( 𝑏 = ( Base ‘ 𝑓 ) ∧ 𝑟 = ( le ‘ 𝑓 ) ∧ ∀ 𝑥𝑏𝑦𝑏𝑧𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) }
37 0 36 wceq Poset = { 𝑓 ∣ ∃ 𝑏𝑟 ( 𝑏 = ( Base ‘ 𝑓 ) ∧ 𝑟 = ( le ‘ 𝑓 ) ∧ ∀ 𝑥𝑏𝑦𝑏𝑧𝑏 ( 𝑥 𝑟 𝑥 ∧ ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ) }