Metamath Proof Explorer


Definition df-ppi

Description: Define the prime π function, which counts the number of primes less than or equal to x , see definition in ApostolNT p. 8. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion df-ppi π = ( 𝑥 ∈ ℝ ↦ ( ♯ ‘ ( ( 0 [,] 𝑥 ) ∩ ℙ ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cppi π
1 vx 𝑥
2 cr
3 chash
4 cc0 0
5 cicc [,]
6 1 cv 𝑥
7 4 6 5 co ( 0 [,] 𝑥 )
8 cprime
9 7 8 cin ( ( 0 [,] 𝑥 ) ∩ ℙ )
10 9 3 cfv ( ♯ ‘ ( ( 0 [,] 𝑥 ) ∩ ℙ ) )
11 1 2 10 cmpt ( 𝑥 ∈ ℝ ↦ ( ♯ ‘ ( ( 0 [,] 𝑥 ) ∩ ℙ ) ) )
12 0 11 wceq π = ( 𝑥 ∈ ℝ ↦ ( ♯ ‘ ( ( 0 [,] 𝑥 ) ∩ ℙ ) ) )