Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Number-theoretical functions
df-ppi
Metamath Proof Explorer
Description: Define the prime π function, which counts the number of primes less
than or equal to x , see definition in ApostolNT p. 8.
(Contributed by Mario Carneiro , 15-Sep-2014)
Ref
Expression
Assertion
df-ppi
⊢ π = ( 𝑥 ∈ ℝ ↦ ( ♯ ‘ ( ( 0 [,] 𝑥 ) ∩ ℙ ) ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cppi
⊢ π
1
vx
⊢ 𝑥
2
cr
⊢ ℝ
3
chash
⊢ ♯
4
cc0
⊢ 0
5
cicc
⊢ [,]
6
1
cv
⊢ 𝑥
7
4 6 5
co
⊢ ( 0 [,] 𝑥 )
8
cprime
⊢ ℙ
9
7 8
cin
⊢ ( ( 0 [,] 𝑥 ) ∩ ℙ )
10
9 3
cfv
⊢ ( ♯ ‘ ( ( 0 [,] 𝑥 ) ∩ ℙ ) )
11
1 2 10
cmpt
⊢ ( 𝑥 ∈ ℝ ↦ ( ♯ ‘ ( ( 0 [,] 𝑥 ) ∩ ℙ ) ) )
12
0 11
wceq
⊢ π = ( 𝑥 ∈ ℝ ↦ ( ♯ ‘ ( ( 0 [,] 𝑥 ) ∩ ℙ ) ) )