Step |
Hyp |
Ref |
Expression |
0 |
|
cprds |
⊢ Xs |
1 |
|
vs |
⊢ 𝑠 |
2 |
|
cvv |
⊢ V |
3 |
|
vr |
⊢ 𝑟 |
4 |
|
vx |
⊢ 𝑥 |
5 |
3
|
cv |
⊢ 𝑟 |
6 |
5
|
cdm |
⊢ dom 𝑟 |
7 |
|
cbs |
⊢ Base |
8 |
4
|
cv |
⊢ 𝑥 |
9 |
8 5
|
cfv |
⊢ ( 𝑟 ‘ 𝑥 ) |
10 |
9 7
|
cfv |
⊢ ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) |
11 |
4 6 10
|
cixp |
⊢ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) |
12 |
|
vv |
⊢ 𝑣 |
13 |
|
vf |
⊢ 𝑓 |
14 |
12
|
cv |
⊢ 𝑣 |
15 |
|
vg |
⊢ 𝑔 |
16 |
13
|
cv |
⊢ 𝑓 |
17 |
8 16
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
18 |
|
chom |
⊢ Hom |
19 |
9 18
|
cfv |
⊢ ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) |
20 |
15
|
cv |
⊢ 𝑔 |
21 |
8 20
|
cfv |
⊢ ( 𝑔 ‘ 𝑥 ) |
22 |
17 21 19
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) |
23 |
4 6 22
|
cixp |
⊢ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) |
24 |
13 15 14 14 23
|
cmpo |
⊢ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
25 |
|
vh |
⊢ ℎ |
26 |
|
cnx |
⊢ ndx |
27 |
26 7
|
cfv |
⊢ ( Base ‘ ndx ) |
28 |
27 14
|
cop |
⊢ 〈 ( Base ‘ ndx ) , 𝑣 〉 |
29 |
|
cplusg |
⊢ +g |
30 |
26 29
|
cfv |
⊢ ( +g ‘ ndx ) |
31 |
9 29
|
cfv |
⊢ ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) |
32 |
17 21 31
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) |
33 |
4 6 32
|
cmpt |
⊢ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
34 |
13 15 14 14 33
|
cmpo |
⊢ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
35 |
30 34
|
cop |
⊢ 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 |
36 |
|
cmulr |
⊢ .r |
37 |
26 36
|
cfv |
⊢ ( .r ‘ ndx ) |
38 |
9 36
|
cfv |
⊢ ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) |
39 |
17 21 38
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) |
40 |
4 6 39
|
cmpt |
⊢ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
41 |
13 15 14 14 40
|
cmpo |
⊢ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
42 |
37 41
|
cop |
⊢ 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 |
43 |
28 35 42
|
ctp |
⊢ { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } |
44 |
|
csca |
⊢ Scalar |
45 |
26 44
|
cfv |
⊢ ( Scalar ‘ ndx ) |
46 |
1
|
cv |
⊢ 𝑠 |
47 |
45 46
|
cop |
⊢ 〈 ( Scalar ‘ ndx ) , 𝑠 〉 |
48 |
|
cvsca |
⊢ ·𝑠 |
49 |
26 48
|
cfv |
⊢ ( ·𝑠 ‘ ndx ) |
50 |
46 7
|
cfv |
⊢ ( Base ‘ 𝑠 ) |
51 |
9 48
|
cfv |
⊢ ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) |
52 |
16 21 51
|
co |
⊢ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) |
53 |
4 6 52
|
cmpt |
⊢ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
54 |
13 15 50 14 53
|
cmpo |
⊢ ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
55 |
49 54
|
cop |
⊢ 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 |
56 |
|
cip |
⊢ ·𝑖 |
57 |
26 56
|
cfv |
⊢ ( ·𝑖 ‘ ndx ) |
58 |
|
cgsu |
⊢ Σg |
59 |
9 56
|
cfv |
⊢ ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) |
60 |
17 21 59
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) |
61 |
4 6 60
|
cmpt |
⊢ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
62 |
46 61 58
|
co |
⊢ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
63 |
13 15 14 14 62
|
cmpo |
⊢ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
64 |
57 63
|
cop |
⊢ 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 |
65 |
47 55 64
|
ctp |
⊢ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } |
66 |
43 65
|
cun |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) |
67 |
|
cts |
⊢ TopSet |
68 |
26 67
|
cfv |
⊢ ( TopSet ‘ ndx ) |
69 |
|
cpt |
⊢ ∏t |
70 |
|
ctopn |
⊢ TopOpen |
71 |
70 5
|
ccom |
⊢ ( TopOpen ∘ 𝑟 ) |
72 |
71 69
|
cfv |
⊢ ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) |
73 |
68 72
|
cop |
⊢ 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 |
74 |
|
cple |
⊢ le |
75 |
26 74
|
cfv |
⊢ ( le ‘ ndx ) |
76 |
16 20
|
cpr |
⊢ { 𝑓 , 𝑔 } |
77 |
76 14
|
wss |
⊢ { 𝑓 , 𝑔 } ⊆ 𝑣 |
78 |
9 74
|
cfv |
⊢ ( le ‘ ( 𝑟 ‘ 𝑥 ) ) |
79 |
17 21 78
|
wbr |
⊢ ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) |
80 |
79 4 6
|
wral |
⊢ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) |
81 |
77 80
|
wa |
⊢ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) |
82 |
81 13 15
|
copab |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } |
83 |
75 82
|
cop |
⊢ 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 |
84 |
|
cds |
⊢ dist |
85 |
26 84
|
cfv |
⊢ ( dist ‘ ndx ) |
86 |
9 84
|
cfv |
⊢ ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) |
87 |
17 21 86
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) |
88 |
4 6 87
|
cmpt |
⊢ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
89 |
88
|
crn |
⊢ ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
90 |
|
cc0 |
⊢ 0 |
91 |
90
|
csn |
⊢ { 0 } |
92 |
89 91
|
cun |
⊢ ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) |
93 |
|
cxr |
⊢ ℝ* |
94 |
|
clt |
⊢ < |
95 |
92 93 94
|
csup |
⊢ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) |
96 |
13 15 14 14 95
|
cmpo |
⊢ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
97 |
85 96
|
cop |
⊢ 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 |
98 |
73 83 97
|
ctp |
⊢ { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } |
99 |
26 18
|
cfv |
⊢ ( Hom ‘ ndx ) |
100 |
25
|
cv |
⊢ ℎ |
101 |
99 100
|
cop |
⊢ 〈 ( Hom ‘ ndx ) , ℎ 〉 |
102 |
|
cco |
⊢ comp |
103 |
26 102
|
cfv |
⊢ ( comp ‘ ndx ) |
104 |
|
va |
⊢ 𝑎 |
105 |
14 14
|
cxp |
⊢ ( 𝑣 × 𝑣 ) |
106 |
|
vc |
⊢ 𝑐 |
107 |
|
vd |
⊢ 𝑑 |
108 |
|
c2nd |
⊢ 2nd |
109 |
104
|
cv |
⊢ 𝑎 |
110 |
109 108
|
cfv |
⊢ ( 2nd ‘ 𝑎 ) |
111 |
106
|
cv |
⊢ 𝑐 |
112 |
110 111 100
|
co |
⊢ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) |
113 |
|
ve |
⊢ 𝑒 |
114 |
109 100
|
cfv |
⊢ ( ℎ ‘ 𝑎 ) |
115 |
107
|
cv |
⊢ 𝑑 |
116 |
8 115
|
cfv |
⊢ ( 𝑑 ‘ 𝑥 ) |
117 |
|
c1st |
⊢ 1st |
118 |
109 117
|
cfv |
⊢ ( 1st ‘ 𝑎 ) |
119 |
8 118
|
cfv |
⊢ ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) |
120 |
8 110
|
cfv |
⊢ ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) |
121 |
119 120
|
cop |
⊢ 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 |
122 |
9 102
|
cfv |
⊢ ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) |
123 |
8 111
|
cfv |
⊢ ( 𝑐 ‘ 𝑥 ) |
124 |
121 123 122
|
co |
⊢ ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) |
125 |
113
|
cv |
⊢ 𝑒 |
126 |
8 125
|
cfv |
⊢ ( 𝑒 ‘ 𝑥 ) |
127 |
116 126 124
|
co |
⊢ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) |
128 |
4 6 127
|
cmpt |
⊢ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) |
129 |
107 113 112 114 128
|
cmpo |
⊢ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) |
130 |
104 106 105 14 129
|
cmpo |
⊢ ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) |
131 |
103 130
|
cop |
⊢ 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 |
132 |
101 131
|
cpr |
⊢ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } |
133 |
98 132
|
cun |
⊢ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) |
134 |
66 133
|
cun |
⊢ ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) |
135 |
25 24 134
|
csb |
⊢ ⦋ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) / ℎ ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) |
136 |
12 11 135
|
csb |
⊢ ⦋ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) / 𝑣 ⦌ ⦋ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) / ℎ ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) |
137 |
1 3 2 2 136
|
cmpo |
⊢ ( 𝑠 ∈ V , 𝑟 ∈ V ↦ ⦋ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) / 𝑣 ⦌ ⦋ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) / ℎ ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) ) |
138 |
0 137
|
wceq |
⊢ Xs = ( 𝑠 ∈ V , 𝑟 ∈ V ↦ ⦋ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) / 𝑣 ⦌ ⦋ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) / ℎ ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) ) |