| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cprds |
⊢ Xs |
| 1 |
|
vs |
⊢ 𝑠 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vr |
⊢ 𝑟 |
| 4 |
|
vx |
⊢ 𝑥 |
| 5 |
3
|
cv |
⊢ 𝑟 |
| 6 |
5
|
cdm |
⊢ dom 𝑟 |
| 7 |
|
cbs |
⊢ Base |
| 8 |
4
|
cv |
⊢ 𝑥 |
| 9 |
8 5
|
cfv |
⊢ ( 𝑟 ‘ 𝑥 ) |
| 10 |
9 7
|
cfv |
⊢ ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) |
| 11 |
4 6 10
|
cixp |
⊢ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) |
| 12 |
|
vv |
⊢ 𝑣 |
| 13 |
|
vf |
⊢ 𝑓 |
| 14 |
12
|
cv |
⊢ 𝑣 |
| 15 |
|
vg |
⊢ 𝑔 |
| 16 |
13
|
cv |
⊢ 𝑓 |
| 17 |
8 16
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
| 18 |
|
chom |
⊢ Hom |
| 19 |
9 18
|
cfv |
⊢ ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) |
| 20 |
15
|
cv |
⊢ 𝑔 |
| 21 |
8 20
|
cfv |
⊢ ( 𝑔 ‘ 𝑥 ) |
| 22 |
17 21 19
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) |
| 23 |
4 6 22
|
cixp |
⊢ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) |
| 24 |
13 15 14 14 23
|
cmpo |
⊢ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 25 |
|
vh |
⊢ ℎ |
| 26 |
|
cnx |
⊢ ndx |
| 27 |
26 7
|
cfv |
⊢ ( Base ‘ ndx ) |
| 28 |
27 14
|
cop |
⊢ 〈 ( Base ‘ ndx ) , 𝑣 〉 |
| 29 |
|
cplusg |
⊢ +g |
| 30 |
26 29
|
cfv |
⊢ ( +g ‘ ndx ) |
| 31 |
9 29
|
cfv |
⊢ ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) |
| 32 |
17 21 31
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) |
| 33 |
4 6 32
|
cmpt |
⊢ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 34 |
13 15 14 14 33
|
cmpo |
⊢ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 35 |
30 34
|
cop |
⊢ 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 |
| 36 |
|
cmulr |
⊢ .r |
| 37 |
26 36
|
cfv |
⊢ ( .r ‘ ndx ) |
| 38 |
9 36
|
cfv |
⊢ ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) |
| 39 |
17 21 38
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) |
| 40 |
4 6 39
|
cmpt |
⊢ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 41 |
13 15 14 14 40
|
cmpo |
⊢ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 42 |
37 41
|
cop |
⊢ 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 |
| 43 |
28 35 42
|
ctp |
⊢ { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } |
| 44 |
|
csca |
⊢ Scalar |
| 45 |
26 44
|
cfv |
⊢ ( Scalar ‘ ndx ) |
| 46 |
1
|
cv |
⊢ 𝑠 |
| 47 |
45 46
|
cop |
⊢ 〈 ( Scalar ‘ ndx ) , 𝑠 〉 |
| 48 |
|
cvsca |
⊢ ·𝑠 |
| 49 |
26 48
|
cfv |
⊢ ( ·𝑠 ‘ ndx ) |
| 50 |
46 7
|
cfv |
⊢ ( Base ‘ 𝑠 ) |
| 51 |
9 48
|
cfv |
⊢ ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) |
| 52 |
16 21 51
|
co |
⊢ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) |
| 53 |
4 6 52
|
cmpt |
⊢ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 54 |
13 15 50 14 53
|
cmpo |
⊢ ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 55 |
49 54
|
cop |
⊢ 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 |
| 56 |
|
cip |
⊢ ·𝑖 |
| 57 |
26 56
|
cfv |
⊢ ( ·𝑖 ‘ ndx ) |
| 58 |
|
cgsu |
⊢ Σg |
| 59 |
9 56
|
cfv |
⊢ ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) |
| 60 |
17 21 59
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) |
| 61 |
4 6 60
|
cmpt |
⊢ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 62 |
46 61 58
|
co |
⊢ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 63 |
13 15 14 14 62
|
cmpo |
⊢ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 64 |
57 63
|
cop |
⊢ 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 |
| 65 |
47 55 64
|
ctp |
⊢ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } |
| 66 |
43 65
|
cun |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) |
| 67 |
|
cts |
⊢ TopSet |
| 68 |
26 67
|
cfv |
⊢ ( TopSet ‘ ndx ) |
| 69 |
|
cpt |
⊢ ∏t |
| 70 |
|
ctopn |
⊢ TopOpen |
| 71 |
70 5
|
ccom |
⊢ ( TopOpen ∘ 𝑟 ) |
| 72 |
71 69
|
cfv |
⊢ ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) |
| 73 |
68 72
|
cop |
⊢ 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 |
| 74 |
|
cple |
⊢ le |
| 75 |
26 74
|
cfv |
⊢ ( le ‘ ndx ) |
| 76 |
16 20
|
cpr |
⊢ { 𝑓 , 𝑔 } |
| 77 |
76 14
|
wss |
⊢ { 𝑓 , 𝑔 } ⊆ 𝑣 |
| 78 |
9 74
|
cfv |
⊢ ( le ‘ ( 𝑟 ‘ 𝑥 ) ) |
| 79 |
17 21 78
|
wbr |
⊢ ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) |
| 80 |
79 4 6
|
wral |
⊢ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) |
| 81 |
77 80
|
wa |
⊢ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) |
| 82 |
81 13 15
|
copab |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } |
| 83 |
75 82
|
cop |
⊢ 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 |
| 84 |
|
cds |
⊢ dist |
| 85 |
26 84
|
cfv |
⊢ ( dist ‘ ndx ) |
| 86 |
9 84
|
cfv |
⊢ ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) |
| 87 |
17 21 86
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) |
| 88 |
4 6 87
|
cmpt |
⊢ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 89 |
88
|
crn |
⊢ ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 90 |
|
cc0 |
⊢ 0 |
| 91 |
90
|
csn |
⊢ { 0 } |
| 92 |
89 91
|
cun |
⊢ ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) |
| 93 |
|
cxr |
⊢ ℝ* |
| 94 |
|
clt |
⊢ < |
| 95 |
92 93 94
|
csup |
⊢ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) |
| 96 |
13 15 14 14 95
|
cmpo |
⊢ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
| 97 |
85 96
|
cop |
⊢ 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 |
| 98 |
73 83 97
|
ctp |
⊢ { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } |
| 99 |
26 18
|
cfv |
⊢ ( Hom ‘ ndx ) |
| 100 |
25
|
cv |
⊢ ℎ |
| 101 |
99 100
|
cop |
⊢ 〈 ( Hom ‘ ndx ) , ℎ 〉 |
| 102 |
|
cco |
⊢ comp |
| 103 |
26 102
|
cfv |
⊢ ( comp ‘ ndx ) |
| 104 |
|
va |
⊢ 𝑎 |
| 105 |
14 14
|
cxp |
⊢ ( 𝑣 × 𝑣 ) |
| 106 |
|
vc |
⊢ 𝑐 |
| 107 |
|
vd |
⊢ 𝑑 |
| 108 |
|
c2nd |
⊢ 2nd |
| 109 |
104
|
cv |
⊢ 𝑎 |
| 110 |
109 108
|
cfv |
⊢ ( 2nd ‘ 𝑎 ) |
| 111 |
106
|
cv |
⊢ 𝑐 |
| 112 |
110 111 100
|
co |
⊢ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) |
| 113 |
|
ve |
⊢ 𝑒 |
| 114 |
109 100
|
cfv |
⊢ ( ℎ ‘ 𝑎 ) |
| 115 |
107
|
cv |
⊢ 𝑑 |
| 116 |
8 115
|
cfv |
⊢ ( 𝑑 ‘ 𝑥 ) |
| 117 |
|
c1st |
⊢ 1st |
| 118 |
109 117
|
cfv |
⊢ ( 1st ‘ 𝑎 ) |
| 119 |
8 118
|
cfv |
⊢ ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) |
| 120 |
8 110
|
cfv |
⊢ ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) |
| 121 |
119 120
|
cop |
⊢ 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 |
| 122 |
9 102
|
cfv |
⊢ ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) |
| 123 |
8 111
|
cfv |
⊢ ( 𝑐 ‘ 𝑥 ) |
| 124 |
121 123 122
|
co |
⊢ ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) |
| 125 |
113
|
cv |
⊢ 𝑒 |
| 126 |
8 125
|
cfv |
⊢ ( 𝑒 ‘ 𝑥 ) |
| 127 |
116 126 124
|
co |
⊢ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) |
| 128 |
4 6 127
|
cmpt |
⊢ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) |
| 129 |
107 113 112 114 128
|
cmpo |
⊢ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) |
| 130 |
104 106 105 14 129
|
cmpo |
⊢ ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) |
| 131 |
103 130
|
cop |
⊢ 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 |
| 132 |
101 131
|
cpr |
⊢ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } |
| 133 |
98 132
|
cun |
⊢ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) |
| 134 |
66 133
|
cun |
⊢ ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) |
| 135 |
25 24 134
|
csb |
⊢ ⦋ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) / ℎ ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) |
| 136 |
12 11 135
|
csb |
⊢ ⦋ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) / 𝑣 ⦌ ⦋ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) / ℎ ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) |
| 137 |
1 3 2 2 136
|
cmpo |
⊢ ( 𝑠 ∈ V , 𝑟 ∈ V ↦ ⦋ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) / 𝑣 ⦌ ⦋ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) / ℎ ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) ) |
| 138 |
0 137
|
wceq |
⊢ Xs = ( 𝑠 ∈ V , 𝑟 ∈ V ↦ ⦋ X 𝑥 ∈ dom 𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) / 𝑣 ⦌ ⦋ ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ X 𝑥 ∈ dom 𝑟 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) / ℎ ⦌ ( ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑠 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑠 ) , 𝑔 ∈ 𝑣 ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ ( 𝑠 Σg ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑟 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝑣 ∧ ∀ 𝑥 ∈ dom 𝑟 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ 𝑣 , 𝑔 ∈ 𝑣 ↦ sup ( ( ran ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ℎ 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝑣 × 𝑣 ) , 𝑐 ∈ 𝑣 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ℎ 𝑐 ) , 𝑒 ∈ ( ℎ ‘ 𝑎 ) ↦ ( 𝑥 ∈ dom 𝑟 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑟 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) ) |