Description: Define the predecessor class of a binary relation. This is the class of all elements y of A such that y R X (see elpred ). (Contributed by Scott Fenton, 29-Jan-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-pred | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | ⊢ 𝑅 | |
| 1 | cA | ⊢ 𝐴 | |
| 2 | cX | ⊢ 𝑋 | |
| 3 | 1 0 2 | cpred | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) |
| 4 | 0 | ccnv | ⊢ ◡ 𝑅 |
| 5 | 2 | csn | ⊢ { 𝑋 } |
| 6 | 4 5 | cima | ⊢ ( ◡ 𝑅 “ { 𝑋 } ) |
| 7 | 1 6 | cin | ⊢ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) |
| 8 | 3 7 | wceq | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) |