Metamath Proof Explorer


Definition df-pred

Description: Define the predecessor class of a binary relation. This is the class of all elements y of A such that y R X (see elpred ). (Contributed by Scott Fenton, 29-Jan-2011)

Ref Expression
Assertion df-pred Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR 𝑅
1 cA 𝐴
2 cX 𝑋
3 1 0 2 cpred Pred ( 𝑅 , 𝐴 , 𝑋 )
4 0 ccnv 𝑅
5 2 csn { 𝑋 }
6 4 5 cima ( 𝑅 “ { 𝑋 } )
7 1 6 cin ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) )
8 3 7 wceq Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) )