Metamath Proof Explorer
Description: Define the set of prime numbers. (Contributed by Paul Chapman, 22-Jun-2011)
|
|
Ref |
Expression |
|
Assertion |
df-prm |
⊢ ℙ = { 𝑝 ∈ ℕ ∣ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝 } ≈ 2o } |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
cprime |
⊢ ℙ |
1 |
|
vp |
⊢ 𝑝 |
2 |
|
cn |
⊢ ℕ |
3 |
|
vn |
⊢ 𝑛 |
4 |
3
|
cv |
⊢ 𝑛 |
5 |
|
cdvds |
⊢ ∥ |
6 |
1
|
cv |
⊢ 𝑝 |
7 |
4 6 5
|
wbr |
⊢ 𝑛 ∥ 𝑝 |
8 |
7 3 2
|
crab |
⊢ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝 } |
9 |
|
cen |
⊢ ≈ |
10 |
|
c2o |
⊢ 2o |
11 |
8 10 9
|
wbr |
⊢ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝 } ≈ 2o |
12 |
11 1 2
|
crab |
⊢ { 𝑝 ∈ ℕ ∣ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝 } ≈ 2o } |
13 |
0 12
|
wceq |
⊢ ℙ = { 𝑝 ∈ ℕ ∣ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝 } ≈ 2o } |