Metamath Proof Explorer


Definition df-prm

Description: Define the set of prime numbers. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion df-prm ℙ = { 𝑝 ∈ ℕ ∣ { 𝑛 ∈ ℕ ∣ 𝑛𝑝 } ≈ 2o }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprime
1 vp 𝑝
2 cn
3 vn 𝑛
4 3 cv 𝑛
5 cdvds
6 1 cv 𝑝
7 4 6 5 wbr 𝑛𝑝
8 7 3 2 crab { 𝑛 ∈ ℕ ∣ 𝑛𝑝 }
9 cen
10 c2o 2o
11 8 10 9 wbr { 𝑛 ∈ ℕ ∣ 𝑛𝑝 } ≈ 2o
12 11 1 2 crab { 𝑝 ∈ ℕ ∣ { 𝑛 ∈ ℕ ∣ 𝑛𝑝 } ≈ 2o }
13 0 12 wceq ℙ = { 𝑝 ∈ ℕ ∣ { 𝑛 ∈ ℕ ∣ 𝑛𝑝 } ≈ 2o }