Description: Define the primorial function on nonnegative integers as the product of all prime numbers less than or equal to the integer. For example, ( #p1 0 ) = 2 x. 3 x. 5 x. 7 = 2 1 0 (see ex-prmo ).
In the literature, the primorial function is written as a postscript hash: 6# = 30. In contrast to prmorcht , where the primorial function is defined by using the sequence builder ( P = seq 1 ( x. , F ) ), the more specialized definition of a product of a series is used here. (Contributed by AV, 28-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | df-prmo | ⊢ #p = ( 𝑛 ∈ ℕ0 ↦ ∏ 𝑘 ∈ ( 1 ... 𝑛 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cprmo | ⊢ #p | |
1 | vn | ⊢ 𝑛 | |
2 | cn0 | ⊢ ℕ0 | |
3 | vk | ⊢ 𝑘 | |
4 | c1 | ⊢ 1 | |
5 | cfz | ⊢ ... | |
6 | 1 | cv | ⊢ 𝑛 |
7 | 4 6 5 | co | ⊢ ( 1 ... 𝑛 ) |
8 | 3 | cv | ⊢ 𝑘 |
9 | cprime | ⊢ ℙ | |
10 | 8 9 | wcel | ⊢ 𝑘 ∈ ℙ |
11 | 10 8 4 | cif | ⊢ if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) |
12 | 7 11 3 | cprod | ⊢ ∏ 𝑘 ∈ ( 1 ... 𝑛 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) |
13 | 1 2 12 | cmpt | ⊢ ( 𝑛 ∈ ℕ0 ↦ ∏ 𝑘 ∈ ( 1 ... 𝑛 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) |
14 | 0 13 | wceq | ⊢ #p = ( 𝑛 ∈ ℕ0 ↦ ∏ 𝑘 ∈ ( 1 ... 𝑛 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) |