Metamath Proof Explorer


Definition df-prod

Description: Define the product of a series with an index set of integers A . This definition takes most of the aspects of df-sum and adapts them for multiplication instead of addition. However, we insist that in the infinite case, there is a nonzero tail of the sequence. This ensures that the convergence criteria match those of infinite sums. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Assertion df-prod 𝑘𝐴 𝐵 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐴𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( 𝑓𝑛 ) / 𝑘 𝐵 ) ) ‘ 𝑚 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vk 𝑘
1 cA 𝐴
2 cB 𝐵
3 1 2 0 cprod 𝑘𝐴 𝐵
4 vx 𝑥
5 vm 𝑚
6 cz
7 cuz
8 5 cv 𝑚
9 8 7 cfv ( ℤ𝑚 )
10 1 9 wss 𝐴 ⊆ ( ℤ𝑚 )
11 vn 𝑛
12 vy 𝑦
13 12 cv 𝑦
14 cc0 0
15 13 14 wne 𝑦 ≠ 0
16 11 cv 𝑛
17 cmul ·
18 0 cv 𝑘
19 18 1 wcel 𝑘𝐴
20 c1 1
21 19 2 20 cif if ( 𝑘𝐴 , 𝐵 , 1 )
22 0 6 21 cmpt ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) )
23 17 22 16 cseq seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) ) )
24 cli
25 23 13 24 wbr seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦
26 15 25 wa ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 )
27 26 12 wex 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 )
28 27 11 9 wrex 𝑛 ∈ ( ℤ𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 )
29 17 22 8 cseq seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) ) )
30 4 cv 𝑥
31 29 30 24 wbr seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥
32 10 28 31 w3a ( 𝐴 ⊆ ( ℤ𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 )
33 32 5 6 wrex 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 )
34 cn
35 vf 𝑓
36 35 cv 𝑓
37 cfz ...
38 20 8 37 co ( 1 ... 𝑚 )
39 38 1 36 wf1o 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐴
40 16 36 cfv ( 𝑓𝑛 )
41 0 40 2 csb ( 𝑓𝑛 ) / 𝑘 𝐵
42 11 34 41 cmpt ( 𝑛 ∈ ℕ ↦ ( 𝑓𝑛 ) / 𝑘 𝐵 )
43 17 42 20 cseq seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( 𝑓𝑛 ) / 𝑘 𝐵 ) )
44 8 43 cfv ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( 𝑓𝑛 ) / 𝑘 𝐵 ) ) ‘ 𝑚 )
45 30 44 wceq 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( 𝑓𝑛 ) / 𝑘 𝐵 ) ) ‘ 𝑚 )
46 39 45 wa ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐴𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( 𝑓𝑛 ) / 𝑘 𝐵 ) ) ‘ 𝑚 ) )
47 46 35 wex 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐴𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( 𝑓𝑛 ) / 𝑘 𝐵 ) ) ‘ 𝑚 ) )
48 47 5 34 wrex 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐴𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( 𝑓𝑛 ) / 𝑘 𝐵 ) ) ‘ 𝑚 ) )
49 33 48 wo ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐴𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( 𝑓𝑛 ) / 𝑘 𝐵 ) ) ‘ 𝑚 ) ) )
50 49 4 cio ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐴𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( 𝑓𝑛 ) / 𝑘 𝐵 ) ) ‘ 𝑚 ) ) ) )
51 3 50 wceq 𝑘𝐴 𝐵 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto𝐴𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ( 𝑓𝑛 ) / 𝑘 𝐵 ) ) ‘ 𝑚 ) ) ) )