| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cprpr | 
							⊢ Pairsproper  | 
						
						
							| 1 | 
							
								
							 | 
							vv | 
							⊢ 𝑣  | 
						
						
							| 2 | 
							
								
							 | 
							cvv | 
							⊢ V  | 
						
						
							| 3 | 
							
								
							 | 
							vp | 
							⊢ 𝑝  | 
						
						
							| 4 | 
							
								
							 | 
							va | 
							⊢ 𝑎  | 
						
						
							| 5 | 
							
								1
							 | 
							cv | 
							⊢ 𝑣  | 
						
						
							| 6 | 
							
								
							 | 
							vb | 
							⊢ 𝑏  | 
						
						
							| 7 | 
							
								4
							 | 
							cv | 
							⊢ 𝑎  | 
						
						
							| 8 | 
							
								6
							 | 
							cv | 
							⊢ 𝑏  | 
						
						
							| 9 | 
							
								7 8
							 | 
							wne | 
							⊢ 𝑎  ≠  𝑏  | 
						
						
							| 10 | 
							
								3
							 | 
							cv | 
							⊢ 𝑝  | 
						
						
							| 11 | 
							
								7 8
							 | 
							cpr | 
							⊢ { 𝑎 ,  𝑏 }  | 
						
						
							| 12 | 
							
								10 11
							 | 
							wceq | 
							⊢ 𝑝  =  { 𝑎 ,  𝑏 }  | 
						
						
							| 13 | 
							
								9 12
							 | 
							wa | 
							⊢ ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } )  | 
						
						
							| 14 | 
							
								13 6 5
							 | 
							wrex | 
							⊢ ∃ 𝑏  ∈  𝑣 ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } )  | 
						
						
							| 15 | 
							
								14 4 5
							 | 
							wrex | 
							⊢ ∃ 𝑎  ∈  𝑣 ∃ 𝑏  ∈  𝑣 ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } )  | 
						
						
							| 16 | 
							
								15 3
							 | 
							cab | 
							⊢ { 𝑝  ∣  ∃ 𝑎  ∈  𝑣 ∃ 𝑏  ∈  𝑣 ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) }  | 
						
						
							| 17 | 
							
								1 2 16
							 | 
							cmpt | 
							⊢ ( 𝑣  ∈  V  ↦  { 𝑝  ∣  ∃ 𝑎  ∈  𝑣 ∃ 𝑏  ∈  𝑣 ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) } )  | 
						
						
							| 18 | 
							
								0 17
							 | 
							wceq | 
							⊢ Pairsproper  =  ( 𝑣  ∈  V  ↦  { 𝑝  ∣  ∃ 𝑎  ∈  𝑣 ∃ 𝑏  ∈  𝑣 ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) } )  |