| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpsd |
⊢ mPSDer |
| 1 |
|
vi |
⊢ 𝑖 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vr |
⊢ 𝑟 |
| 4 |
|
vx |
⊢ 𝑥 |
| 5 |
1
|
cv |
⊢ 𝑖 |
| 6 |
|
vf |
⊢ 𝑓 |
| 7 |
|
cbs |
⊢ Base |
| 8 |
|
cmps |
⊢ mPwSer |
| 9 |
3
|
cv |
⊢ 𝑟 |
| 10 |
5 9 8
|
co |
⊢ ( 𝑖 mPwSer 𝑟 ) |
| 11 |
10 7
|
cfv |
⊢ ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) |
| 12 |
|
vk |
⊢ 𝑘 |
| 13 |
|
vh |
⊢ ℎ |
| 14 |
|
cn0 |
⊢ ℕ0 |
| 15 |
|
cmap |
⊢ ↑m |
| 16 |
14 5 15
|
co |
⊢ ( ℕ0 ↑m 𝑖 ) |
| 17 |
13
|
cv |
⊢ ℎ |
| 18 |
17
|
ccnv |
⊢ ◡ ℎ |
| 19 |
|
cn |
⊢ ℕ |
| 20 |
18 19
|
cima |
⊢ ( ◡ ℎ “ ℕ ) |
| 21 |
|
cfn |
⊢ Fin |
| 22 |
20 21
|
wcel |
⊢ ( ◡ ℎ “ ℕ ) ∈ Fin |
| 23 |
22 13 16
|
crab |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 24 |
12
|
cv |
⊢ 𝑘 |
| 25 |
4
|
cv |
⊢ 𝑥 |
| 26 |
25 24
|
cfv |
⊢ ( 𝑘 ‘ 𝑥 ) |
| 27 |
|
caddc |
⊢ + |
| 28 |
|
c1 |
⊢ 1 |
| 29 |
26 28 27
|
co |
⊢ ( ( 𝑘 ‘ 𝑥 ) + 1 ) |
| 30 |
|
cmg |
⊢ .g |
| 31 |
9 30
|
cfv |
⊢ ( .g ‘ 𝑟 ) |
| 32 |
6
|
cv |
⊢ 𝑓 |
| 33 |
27
|
cof |
⊢ ∘f + |
| 34 |
|
vy |
⊢ 𝑦 |
| 35 |
34
|
cv |
⊢ 𝑦 |
| 36 |
35 25
|
wceq |
⊢ 𝑦 = 𝑥 |
| 37 |
|
cc0 |
⊢ 0 |
| 38 |
36 28 37
|
cif |
⊢ if ( 𝑦 = 𝑥 , 1 , 0 ) |
| 39 |
34 5 38
|
cmpt |
⊢ ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) |
| 40 |
24 39 33
|
co |
⊢ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) |
| 41 |
40 32
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) |
| 42 |
29 41 31
|
co |
⊢ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) |
| 43 |
12 23 42
|
cmpt |
⊢ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) |
| 44 |
6 11 43
|
cmpt |
⊢ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) |
| 45 |
4 5 44
|
cmpt |
⊢ ( 𝑥 ∈ 𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) ) |
| 46 |
1 3 2 2 45
|
cmpo |
⊢ ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑥 ∈ 𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) ) ) |
| 47 |
0 46
|
wceq |
⊢ mPSDer = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑥 ∈ 𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) ) ) |