Step |
Hyp |
Ref |
Expression |
0 |
|
cpsmet |
⊢ PsMet |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cvv |
⊢ V |
3 |
|
vd |
⊢ 𝑑 |
4 |
|
cxr |
⊢ ℝ* |
5 |
|
cmap |
⊢ ↑m |
6 |
1
|
cv |
⊢ 𝑥 |
7 |
6 6
|
cxp |
⊢ ( 𝑥 × 𝑥 ) |
8 |
4 7 5
|
co |
⊢ ( ℝ* ↑m ( 𝑥 × 𝑥 ) ) |
9 |
|
vy |
⊢ 𝑦 |
10 |
9
|
cv |
⊢ 𝑦 |
11 |
3
|
cv |
⊢ 𝑑 |
12 |
10 10 11
|
co |
⊢ ( 𝑦 𝑑 𝑦 ) |
13 |
|
cc0 |
⊢ 0 |
14 |
12 13
|
wceq |
⊢ ( 𝑦 𝑑 𝑦 ) = 0 |
15 |
|
vz |
⊢ 𝑧 |
16 |
|
vw |
⊢ 𝑤 |
17 |
15
|
cv |
⊢ 𝑧 |
18 |
10 17 11
|
co |
⊢ ( 𝑦 𝑑 𝑧 ) |
19 |
|
cle |
⊢ ≤ |
20 |
16
|
cv |
⊢ 𝑤 |
21 |
20 10 11
|
co |
⊢ ( 𝑤 𝑑 𝑦 ) |
22 |
|
cxad |
⊢ +𝑒 |
23 |
20 17 11
|
co |
⊢ ( 𝑤 𝑑 𝑧 ) |
24 |
21 23 22
|
co |
⊢ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) |
25 |
18 24 19
|
wbr |
⊢ ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) |
26 |
25 16 6
|
wral |
⊢ ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) |
27 |
26 15 6
|
wral |
⊢ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) |
28 |
14 27
|
wa |
⊢ ( ( 𝑦 𝑑 𝑦 ) = 0 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) ) |
29 |
28 9 6
|
wral |
⊢ ∀ 𝑦 ∈ 𝑥 ( ( 𝑦 𝑑 𝑦 ) = 0 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) ) |
30 |
29 3 8
|
crab |
⊢ { 𝑑 ∈ ( ℝ* ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦 ∈ 𝑥 ( ( 𝑦 𝑑 𝑦 ) = 0 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) ) } |
31 |
1 2 30
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( ℝ* ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦 ∈ 𝑥 ( ( 𝑦 𝑑 𝑦 ) = 0 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) ) } ) |
32 |
0 31
|
wceq |
⊢ PsMet = ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( ℝ* ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦 ∈ 𝑥 ( ( 𝑦 𝑑 𝑦 ) = 0 ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) ) } ) |