Metamath Proof Explorer


Definition df-psmet

Description: Define the set of all pseudometrics on a given base set. In a pseudo metric, two distinct points may have a distance zero. (Contributed by Thierry Arnoux, 7-Feb-2018)

Ref Expression
Assertion df-psmet PsMet = ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( ℝ*m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦𝑥 ( ( 𝑦 𝑑 𝑦 ) = 0 ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpsmet PsMet
1 vx 𝑥
2 cvv V
3 vd 𝑑
4 cxr *
5 cmap m
6 1 cv 𝑥
7 6 6 cxp ( 𝑥 × 𝑥 )
8 4 7 5 co ( ℝ*m ( 𝑥 × 𝑥 ) )
9 vy 𝑦
10 9 cv 𝑦
11 3 cv 𝑑
12 10 10 11 co ( 𝑦 𝑑 𝑦 )
13 cc0 0
14 12 13 wceq ( 𝑦 𝑑 𝑦 ) = 0
15 vz 𝑧
16 vw 𝑤
17 15 cv 𝑧
18 10 17 11 co ( 𝑦 𝑑 𝑧 )
19 cle
20 16 cv 𝑤
21 20 10 11 co ( 𝑤 𝑑 𝑦 )
22 cxad +𝑒
23 20 17 11 co ( 𝑤 𝑑 𝑧 )
24 21 23 22 co ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) )
25 18 24 19 wbr ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) )
26 25 16 6 wral 𝑤𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) )
27 26 15 6 wral 𝑧𝑥𝑤𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) )
28 14 27 wa ( ( 𝑦 𝑑 𝑦 ) = 0 ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) )
29 28 9 6 wral 𝑦𝑥 ( ( 𝑦 𝑑 𝑦 ) = 0 ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) )
30 29 3 8 crab { 𝑑 ∈ ( ℝ*m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦𝑥 ( ( 𝑦 𝑑 𝑦 ) = 0 ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) ) }
31 1 2 30 cmpt ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( ℝ*m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦𝑥 ( ( 𝑦 𝑑 𝑦 ) = 0 ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) ) } )
32 0 31 wceq PsMet = ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( ℝ*m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦𝑥 ( ( 𝑦 𝑑 𝑦 ) = 0 ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) ) } )