Step |
Hyp |
Ref |
Expression |
0 |
|
cmps |
⊢ mPwSer |
1 |
|
vi |
⊢ 𝑖 |
2 |
|
cvv |
⊢ V |
3 |
|
vr |
⊢ 𝑟 |
4 |
|
vh |
⊢ ℎ |
5 |
|
cn0 |
⊢ ℕ0 |
6 |
|
cmap |
⊢ ↑m |
7 |
1
|
cv |
⊢ 𝑖 |
8 |
5 7 6
|
co |
⊢ ( ℕ0 ↑m 𝑖 ) |
9 |
4
|
cv |
⊢ ℎ |
10 |
9
|
ccnv |
⊢ ◡ ℎ |
11 |
|
cn |
⊢ ℕ |
12 |
10 11
|
cima |
⊢ ( ◡ ℎ “ ℕ ) |
13 |
|
cfn |
⊢ Fin |
14 |
12 13
|
wcel |
⊢ ( ◡ ℎ “ ℕ ) ∈ Fin |
15 |
14 4 8
|
crab |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
16 |
|
vd |
⊢ 𝑑 |
17 |
|
cbs |
⊢ Base |
18 |
3
|
cv |
⊢ 𝑟 |
19 |
18 17
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
20 |
16
|
cv |
⊢ 𝑑 |
21 |
19 20 6
|
co |
⊢ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) |
22 |
|
vb |
⊢ 𝑏 |
23 |
|
cnx |
⊢ ndx |
24 |
23 17
|
cfv |
⊢ ( Base ‘ ndx ) |
25 |
22
|
cv |
⊢ 𝑏 |
26 |
24 25
|
cop |
⊢ 〈 ( Base ‘ ndx ) , 𝑏 〉 |
27 |
|
cplusg |
⊢ +g |
28 |
23 27
|
cfv |
⊢ ( +g ‘ ndx ) |
29 |
18 27
|
cfv |
⊢ ( +g ‘ 𝑟 ) |
30 |
29
|
cof |
⊢ ∘f ( +g ‘ 𝑟 ) |
31 |
25 25
|
cxp |
⊢ ( 𝑏 × 𝑏 ) |
32 |
30 31
|
cres |
⊢ ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) |
33 |
28 32
|
cop |
⊢ 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 |
34 |
|
cmulr |
⊢ .r |
35 |
23 34
|
cfv |
⊢ ( .r ‘ ndx ) |
36 |
|
vf |
⊢ 𝑓 |
37 |
|
vg |
⊢ 𝑔 |
38 |
|
vk |
⊢ 𝑘 |
39 |
|
cgsu |
⊢ Σg |
40 |
|
vx |
⊢ 𝑥 |
41 |
|
vy |
⊢ 𝑦 |
42 |
41
|
cv |
⊢ 𝑦 |
43 |
|
cle |
⊢ ≤ |
44 |
43
|
cofr |
⊢ ∘r ≤ |
45 |
38
|
cv |
⊢ 𝑘 |
46 |
42 45 44
|
wbr |
⊢ 𝑦 ∘r ≤ 𝑘 |
47 |
46 41 20
|
crab |
⊢ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } |
48 |
36
|
cv |
⊢ 𝑓 |
49 |
40
|
cv |
⊢ 𝑥 |
50 |
49 48
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
51 |
18 34
|
cfv |
⊢ ( .r ‘ 𝑟 ) |
52 |
37
|
cv |
⊢ 𝑔 |
53 |
|
cmin |
⊢ − |
54 |
53
|
cof |
⊢ ∘f − |
55 |
45 49 54
|
co |
⊢ ( 𝑘 ∘f − 𝑥 ) |
56 |
55 52
|
cfv |
⊢ ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) |
57 |
50 56 51
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) |
58 |
40 47 57
|
cmpt |
⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) |
59 |
18 58 39
|
co |
⊢ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) |
60 |
38 20 59
|
cmpt |
⊢ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) |
61 |
36 37 25 25 60
|
cmpo |
⊢ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
62 |
35 61
|
cop |
⊢ 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 |
63 |
26 33 62
|
ctp |
⊢ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } |
64 |
|
csca |
⊢ Scalar |
65 |
23 64
|
cfv |
⊢ ( Scalar ‘ ndx ) |
66 |
65 18
|
cop |
⊢ 〈 ( Scalar ‘ ndx ) , 𝑟 〉 |
67 |
|
cvsca |
⊢ ·𝑠 |
68 |
23 67
|
cfv |
⊢ ( ·𝑠 ‘ ndx ) |
69 |
49
|
csn |
⊢ { 𝑥 } |
70 |
20 69
|
cxp |
⊢ ( 𝑑 × { 𝑥 } ) |
71 |
51
|
cof |
⊢ ∘f ( .r ‘ 𝑟 ) |
72 |
70 48 71
|
co |
⊢ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) |
73 |
40 36 19 25 72
|
cmpo |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) |
74 |
68 73
|
cop |
⊢ 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 |
75 |
|
cts |
⊢ TopSet |
76 |
23 75
|
cfv |
⊢ ( TopSet ‘ ndx ) |
77 |
|
cpt |
⊢ ∏t |
78 |
|
ctopn |
⊢ TopOpen |
79 |
18 78
|
cfv |
⊢ ( TopOpen ‘ 𝑟 ) |
80 |
79
|
csn |
⊢ { ( TopOpen ‘ 𝑟 ) } |
81 |
20 80
|
cxp |
⊢ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) |
82 |
81 77
|
cfv |
⊢ ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) |
83 |
76 82
|
cop |
⊢ 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 |
84 |
66 74 83
|
ctp |
⊢ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } |
85 |
63 84
|
cun |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) |
86 |
22 21 85
|
csb |
⊢ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) |
87 |
16 15 86
|
csb |
⊢ ⦋ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) |
88 |
1 3 2 2 87
|
cmpo |
⊢ ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ⦋ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) ) |
89 |
0 88
|
wceq |
⊢ mPwSer = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ⦋ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) ) |