| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmps |
⊢ mPwSer |
| 1 |
|
vi |
⊢ 𝑖 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vr |
⊢ 𝑟 |
| 4 |
|
vh |
⊢ ℎ |
| 5 |
|
cn0 |
⊢ ℕ0 |
| 6 |
|
cmap |
⊢ ↑m |
| 7 |
1
|
cv |
⊢ 𝑖 |
| 8 |
5 7 6
|
co |
⊢ ( ℕ0 ↑m 𝑖 ) |
| 9 |
4
|
cv |
⊢ ℎ |
| 10 |
9
|
ccnv |
⊢ ◡ ℎ |
| 11 |
|
cn |
⊢ ℕ |
| 12 |
10 11
|
cima |
⊢ ( ◡ ℎ “ ℕ ) |
| 13 |
|
cfn |
⊢ Fin |
| 14 |
12 13
|
wcel |
⊢ ( ◡ ℎ “ ℕ ) ∈ Fin |
| 15 |
14 4 8
|
crab |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 16 |
|
vd |
⊢ 𝑑 |
| 17 |
|
cbs |
⊢ Base |
| 18 |
3
|
cv |
⊢ 𝑟 |
| 19 |
18 17
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
| 20 |
16
|
cv |
⊢ 𝑑 |
| 21 |
19 20 6
|
co |
⊢ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) |
| 22 |
|
vb |
⊢ 𝑏 |
| 23 |
|
cnx |
⊢ ndx |
| 24 |
23 17
|
cfv |
⊢ ( Base ‘ ndx ) |
| 25 |
22
|
cv |
⊢ 𝑏 |
| 26 |
24 25
|
cop |
⊢ 〈 ( Base ‘ ndx ) , 𝑏 〉 |
| 27 |
|
cplusg |
⊢ +g |
| 28 |
23 27
|
cfv |
⊢ ( +g ‘ ndx ) |
| 29 |
18 27
|
cfv |
⊢ ( +g ‘ 𝑟 ) |
| 30 |
29
|
cof |
⊢ ∘f ( +g ‘ 𝑟 ) |
| 31 |
25 25
|
cxp |
⊢ ( 𝑏 × 𝑏 ) |
| 32 |
30 31
|
cres |
⊢ ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) |
| 33 |
28 32
|
cop |
⊢ 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 |
| 34 |
|
cmulr |
⊢ .r |
| 35 |
23 34
|
cfv |
⊢ ( .r ‘ ndx ) |
| 36 |
|
vf |
⊢ 𝑓 |
| 37 |
|
vg |
⊢ 𝑔 |
| 38 |
|
vk |
⊢ 𝑘 |
| 39 |
|
cgsu |
⊢ Σg |
| 40 |
|
vx |
⊢ 𝑥 |
| 41 |
|
vy |
⊢ 𝑦 |
| 42 |
41
|
cv |
⊢ 𝑦 |
| 43 |
|
cle |
⊢ ≤ |
| 44 |
43
|
cofr |
⊢ ∘r ≤ |
| 45 |
38
|
cv |
⊢ 𝑘 |
| 46 |
42 45 44
|
wbr |
⊢ 𝑦 ∘r ≤ 𝑘 |
| 47 |
46 41 20
|
crab |
⊢ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } |
| 48 |
36
|
cv |
⊢ 𝑓 |
| 49 |
40
|
cv |
⊢ 𝑥 |
| 50 |
49 48
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
| 51 |
18 34
|
cfv |
⊢ ( .r ‘ 𝑟 ) |
| 52 |
37
|
cv |
⊢ 𝑔 |
| 53 |
|
cmin |
⊢ − |
| 54 |
53
|
cof |
⊢ ∘f − |
| 55 |
45 49 54
|
co |
⊢ ( 𝑘 ∘f − 𝑥 ) |
| 56 |
55 52
|
cfv |
⊢ ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) |
| 57 |
50 56 51
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) |
| 58 |
40 47 57
|
cmpt |
⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) |
| 59 |
18 58 39
|
co |
⊢ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) |
| 60 |
38 20 59
|
cmpt |
⊢ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) |
| 61 |
36 37 25 25 60
|
cmpo |
⊢ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 62 |
35 61
|
cop |
⊢ 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 |
| 63 |
26 33 62
|
ctp |
⊢ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } |
| 64 |
|
csca |
⊢ Scalar |
| 65 |
23 64
|
cfv |
⊢ ( Scalar ‘ ndx ) |
| 66 |
65 18
|
cop |
⊢ 〈 ( Scalar ‘ ndx ) , 𝑟 〉 |
| 67 |
|
cvsca |
⊢ ·𝑠 |
| 68 |
23 67
|
cfv |
⊢ ( ·𝑠 ‘ ndx ) |
| 69 |
49
|
csn |
⊢ { 𝑥 } |
| 70 |
20 69
|
cxp |
⊢ ( 𝑑 × { 𝑥 } ) |
| 71 |
51
|
cof |
⊢ ∘f ( .r ‘ 𝑟 ) |
| 72 |
70 48 71
|
co |
⊢ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) |
| 73 |
40 36 19 25 72
|
cmpo |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) |
| 74 |
68 73
|
cop |
⊢ 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 |
| 75 |
|
cts |
⊢ TopSet |
| 76 |
23 75
|
cfv |
⊢ ( TopSet ‘ ndx ) |
| 77 |
|
cpt |
⊢ ∏t |
| 78 |
|
ctopn |
⊢ TopOpen |
| 79 |
18 78
|
cfv |
⊢ ( TopOpen ‘ 𝑟 ) |
| 80 |
79
|
csn |
⊢ { ( TopOpen ‘ 𝑟 ) } |
| 81 |
20 80
|
cxp |
⊢ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) |
| 82 |
81 77
|
cfv |
⊢ ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) |
| 83 |
76 82
|
cop |
⊢ 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 |
| 84 |
66 74 83
|
ctp |
⊢ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } |
| 85 |
63 84
|
cun |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) |
| 86 |
22 21 85
|
csb |
⊢ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) |
| 87 |
16 15 86
|
csb |
⊢ ⦋ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) |
| 88 |
1 3 2 2 87
|
cmpo |
⊢ ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ⦋ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) ) |
| 89 |
0 88
|
wceq |
⊢ mPwSer = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ⦋ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) ) |