Step |
Hyp |
Ref |
Expression |
0 |
|
cpscN |
⊢ PSubCl |
1 |
|
vk |
⊢ 𝑘 |
2 |
|
cvv |
⊢ V |
3 |
|
vs |
⊢ 𝑠 |
4 |
3
|
cv |
⊢ 𝑠 |
5 |
|
catm |
⊢ Atoms |
6 |
1
|
cv |
⊢ 𝑘 |
7 |
6 5
|
cfv |
⊢ ( Atoms ‘ 𝑘 ) |
8 |
4 7
|
wss |
⊢ 𝑠 ⊆ ( Atoms ‘ 𝑘 ) |
9 |
|
cpolN |
⊢ ⊥𝑃 |
10 |
6 9
|
cfv |
⊢ ( ⊥𝑃 ‘ 𝑘 ) |
11 |
4 10
|
cfv |
⊢ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ 𝑠 ) |
12 |
11 10
|
cfv |
⊢ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ 𝑠 ) ) |
13 |
12 4
|
wceq |
⊢ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ 𝑠 ) ) = 𝑠 |
14 |
8 13
|
wa |
⊢ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ 𝑠 ) ) = 𝑠 ) |
15 |
14 3
|
cab |
⊢ { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ 𝑠 ) ) = 𝑠 ) } |
16 |
1 2 15
|
cmpt |
⊢ ( 𝑘 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ 𝑠 ) ) = 𝑠 ) } ) |
17 |
0 16
|
wceq |
⊢ PSubCl = ( 𝑘 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ 𝑠 ) ) = 𝑠 ) } ) |