Metamath Proof Explorer


Definition df-psubclN

Description: Define set of all closed projective subspaces, which are those sets of atoms that equal their double polarity. Based on definition in Holland95 p. 223. (Contributed by NM, 23-Jan-2012)

Ref Expression
Assertion df-psubclN PSubCl = ( 𝑘 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ( ( ⊥𝑃𝑘 ) ‘ ( ( ⊥𝑃𝑘 ) ‘ 𝑠 ) ) = 𝑠 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpscN PSubCl
1 vk 𝑘
2 cvv V
3 vs 𝑠
4 3 cv 𝑠
5 catm Atoms
6 1 cv 𝑘
7 6 5 cfv ( Atoms ‘ 𝑘 )
8 4 7 wss 𝑠 ⊆ ( Atoms ‘ 𝑘 )
9 cpolN 𝑃
10 6 9 cfv ( ⊥𝑃𝑘 )
11 4 10 cfv ( ( ⊥𝑃𝑘 ) ‘ 𝑠 )
12 11 10 cfv ( ( ⊥𝑃𝑘 ) ‘ ( ( ⊥𝑃𝑘 ) ‘ 𝑠 ) )
13 12 4 wceq ( ( ⊥𝑃𝑘 ) ‘ ( ( ⊥𝑃𝑘 ) ‘ 𝑠 ) ) = 𝑠
14 8 13 wa ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ( ( ⊥𝑃𝑘 ) ‘ ( ( ⊥𝑃𝑘 ) ‘ 𝑠 ) ) = 𝑠 )
15 14 3 cab { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ( ( ⊥𝑃𝑘 ) ‘ ( ( ⊥𝑃𝑘 ) ‘ 𝑠 ) ) = 𝑠 ) }
16 1 2 15 cmpt ( 𝑘 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ( ( ⊥𝑃𝑘 ) ‘ ( ( ⊥𝑃𝑘 ) ‘ 𝑠 ) ) = 𝑠 ) } )
17 0 16 wceq PSubCl = ( 𝑘 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ( ( ⊥𝑃𝑘 ) ‘ ( ( ⊥𝑃𝑘 ) ‘ 𝑠 ) ) = 𝑠 ) } )